915 resultados para Continuous flow injection system, FIAlab 2600


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large organic food falls to the deep sea - such as whale carcasses and wood logs - support the development of reduced, sulfidic niches in an otherwise oxygenated, oligotrophic deep-sea environment. These transient hot spot ecosystems may serve the dispersal of highly adapted chemosynthetic organisms such as thiotrophic bivalves and siboglinid worms. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches. Wood colonization experiments were carried out for the duration of one year in the vicinity of a cold seep area in the Nile deep-sea fan (Eastern Mediterranean) at depths of 1690 m. Wood logs were deployed in 2006 during the BIONIL cruise (RV Meteor M70/2 with ROV Quest, Marum, Germany) and sampled in 2007 during the Medeco-2 cruise (RV Pourquoi Pas? with ROV Victor 6000, Ifremer, France). Wood-boring bivalves played a key role in the initial degradation of the wood, the dispersal of wood chips and fecal matter around the wood log, and the provision of colonization surfaces to other organisms. Total oxygen uptake measured with a ROV-operated benthic chamber module was higher at the wood (0.5 m away) in contrast to 10 m away at a reference site (25 mmol m-2 d-1 and 1 mmol m-2 d-1, respectively), indicating an increased activity of sedimentary communities around the wood falls. Bacterial cell numbers associated with wood increased substantially from freshly submerged wood to the wood chip/fecal matter layer next to the wood experiments, as determined with Acridine Orange Direct Counts (AODC) and DAPI-stained counts. Microsensor measurements of sulfide, oxygen and pH were conducted ex situ. Sulfide fluxes were higher at the wood experiments when compared to reference measurements (19 and 32 mmol m-2 d-1 vs. 0 and 16 mmol -2 d-1, respectively). Sulfate reduction (SR) rates at the wood experiments were determined in ex situ incubations (1.3 and 2.0 mmol m-2 d-1) and fell into the lower range of SR rates previously observed from other chemosynthetic habitats at cold seeps. There was no influence of wood deposition on phosphate, silicate and nitrate concentrations, but ammonium concentrations were elevated at the wood chip-sediment boundary layer. Concentrations of dissolved organic carbon were much higher at the wood experiments (wood chip-sediment boundary layer) in comparison to measurements at the reference sites, which may indicate that cellulose degradation was highest under anoxic conditions and hence enabled by anaerobic benthic bacteria, e.g. fermenters and sulfate reducers. Our observations demonstrate that, after one year, the presence of wood at the seafloor had led to the creation of sulfidic niches, comparable to what has been observed at whale falls, albeit at lower rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous sea salt and mineral dust aerosol records have been studied on the two EPICA (European Project for Ice Coring in Antarctica) deep ice cores. The joint use of these records from opposite sides of the East Antarctic plateau allows for an estimate of changes in dust transport and emission intensity as well as for the identification of regional differences in the sea salt aerosol source. The mineral dust flux records at both sites show a strong coherency over the last 150 kyr related to dust emission changes in the glacial Patagonian dust source with three times higher dust fluxes in the Atlantic compared to the Indian Ocean sector of the Southern Ocean (SO). Using a simple conceptual transport model this indicates that transport can explain only 40% of the atmospheric dust concentration changes in Antarctica, while factor 5-10 changes occurred. Accordingly, the main cause for the strong glacial dust flux changes in Antarctica must lie in environmental changes in Patagonia. Dust emissions, hence environmental conditions in Patagonia, were very similar during the last two glacials and interglacials, respectively, despite 2-4 °C warmer temperatures recorded in Antarctica during the penultimate interglacial than today. 2-3 times higher sea salt fluxes found in both ice cores in the glacial compared to the Holocene are difficult to reconcile with a largely unchanged transport intensity and the distant open ocean source. The substantial glacial enhancements in sea salt aerosol fluxes can be readily explained assuming sea ice formation as the main sea salt aerosol source with a significantly larger expansion of (summer) sea ice in the Weddell Sea than in the Indian Ocean sector. During the penultimate interglacial, our sea salt records point to a 50% reduction of winter sea ice coverage compared to the Holocene both in the Indian and Atlantic Ocean sector of the SO. However, from 20 to 80 ka before present sea salt fluxes show only very subdued millennial changes despite pronounced temperature fluctuations, likely due to the large distance of the sea ice salt source to our drill sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations of mercury (Hg) have increased slowly in landlocked Arctic char over a 10- to 15-year period in the Arctic. Fluxes of Hg to sediments also show increases in most Arctic lakes. Correlation of Hg with trophic level (TL) was used to investigate and compare biomagnification of Hg in food webs from lakes in the Canadian Arctic sampled from 2002 to 2007. Concentrations of Hg (total Hg and methylmercury [MeHg]) in food webs were compared across longitudinal and latitudinal gradients in relation to d13C and d15N in periphyton, zooplankton, benthic invertebrates, and Arctic char of varying size-classes. Trophic magnification factors (TMFs) were calculated for the food web in each lake and related to available physical and chemical characteristics of the lakes. The relative content of MeHg increased with trophic level from 4.3 to 12.2% in periphyton, 41 to 79% in zooplankton, 59 to 72% in insects, and 74 to 100% in juvenile and adult char. The d13C signatures of adult char indicated coupling with benthic invertebrates. Cannibalism among char lengthened the food chain. Biomagnification was confirmed in all 18 lakes, with TMFs ranging from 3.5 ± 1.1 to 64.3 ± 0.8. Results indicate that TMFs and food chain length (FCL) are key factors in explaining interlake variability in biomagnification of [Hg] among different lakes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfidic muds of cold seeps on the Nile Deep Sea Fan are populated by different types of mat-forming sulfide-oxidizing bacteria. The predominant sulfide oxidizers of three different mats were identified by microscopic and phylogenetic analyses as (i) Arcobacter species producing cotton-ball-like sulfur precipitates, (ii) large filamentous sulfur bacteria including Beggiatoa species, or (iii) single, spherical cells resembling Thiomargarita species. High resolution in situ microprofiles revealed different geochemical settings selecting for different mat types. Arcobacter mats occurred where oxygen and sulfide overlapped at the bottom water interface. Filamentous sulfide oxidizers were associated with non-overlapping, steep gradients of oxygen and sulfide. A dense population of Thiomargarita was favored by temporarily changing supplies of oxygen and sulfide. These results indicate that the decisive factors in selecting for different mat-forming bacteria within one deep-sea province are spatial or temporal variations in energy supply. Furthermore, the occurrence of Arcobacter spp.-related 16S rRNA genes in the sediments below all three types of mats, as well as on top of brine lakes of the Nile Deep Sea Fan, indicates that this group of sulfide oxidizers can switch between different life modes depending on the geobiochemical habitat setting.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: