778 resultados para Conformal Antenas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este libro, desarrolla de manera directa y sencilla el fenómeno de la propagación de las señales electromagnéticas en las bandas de frecuencia de microondas. Aborda la teoría y criterios técnicos y prácticos concernientes al diseño de los radioenlaces puntos a punto (P-P), tanto análogos como digitales. Se incluyen anexos técnicos donde los estudiantes dispondrán de información especializada generada por los fabricantes internacionales de sistemas de Radio y Mux, así como los accesorios de protección y estructuras metálicos propias de estos sistemas (torres para antenas, sistemas de tierra, pararrayos, luces de obstrucción, etc.). Se confía que este libro sea de gran utilidad en la formación de los estudiantes de esta ingeniería.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fast and accurate numerical technique is developed for solving the biharmonic equation in a multiply connected domain, in two dimensions. We apply the technique to the computation of slow viscous flow (Stokes flow) driven by multiple stirring rods. Previously, the technique has been restricted to stirring rods of circular cross section; we show here how the prior method fails for noncircular rods and how it may be adapted to accommodate general rod cross sections, provided only that for each there exists a conformal mapping to a circle. Corresponding simulations of the flow are described, and their stirring properties and energy requirements are discussed briefly. In particular the method allows an accurate calculation of the flow when flat paddles are used to stir a fluid chaotically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design aspects of a novel beam-reconfigurable pla-nar series-fed array are addressed to achieve beam steering with frequency tunability over a relatively broad bandwidth. The design is possible thanks to the use of the complementary strip-slot, which is an innovative broadly matched microstrip radiator, and the careful selection of the phase shifter parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the research is to demonstrate new physiological characteristics receptors in the presence of mosquito larvae. 100 larvae of different species were collected and studied for a week in periods of 8-24 hrs. Larvae stages I, II, III and IV have photo-thermo receptors of light and heat housed in the body is divided into head, thorax and abdomen, perceive hot or cold environments, and have fibers in chest or hairs lining your body or abdomen, and a pair of antennae on the head. Stages II and III are more developed than the initial stages. They are attracted by the dark green at the bottom, a pair of eyes that perceive light and color. Have receptors proteins (RP55) that capture motion at a speed the slightest movement of waves in the water. Its nose is not well developed but have chemoreceptors. They adapt to changes in pH in alkaline media, are sensitive to chemical, thermal and mechanical changes nociceptors have electroreceptors or galvanoreceptores sensitive to electrical stimuli, have mechanoreceptors that are sensitive to touch, pain, pressure, gravity, sound. They have a GPS position that seems the guides. It is precisely in the fibers, mushrooms or bristles are recipients along with the micro villi in head, thorax and abdomen.
RESUMEN El objetivo principal de la investigación es demostrar nuevas características fisiológicas como la presencia de receptores en las larvas de mosquitos. Se recolectaron 100 larvas de diferentes especies y se estudiaron por una semana en periodos de 8 a 24 hrs. Las larvas de los estadios I,II,III y IV tienen foto-termo receptores de luz y calor alojados en el cuerpo que se divide en cabeza, tórax y abdomen, perciben ambientes fríos o calientes, así como tienen fibras en tórax o pelos que recubren su cuerpo, y un par de antenas en la cabeza. Los estadios II y III son más desarrollados que las etapas iniciales. Tienen receptores proteicos RP55. Les atrae el color verde oscuro en el fondo, un par de ojos que perciben la luz y color con fotoreceptores. Tienen receptores RP55 de movimiento que captan a una velocidad el más mínimo movimiento de ondas en el agua. Su olfato no está muy desarrollado pero tienen quimioreceptores. Se adaptan a cambios de pH en medios alcalinos, tienen nociceptores sensibles a cambios químicos, térmicos y mecánicos, tienen galvanoreceptores o electroreceptores sensibles a estímulos eléctricos, tienen mecanoreceptores que son sensibles al tacto, dolor, presión gravedad, sonido. Tienen un GPS de posición que pareciera las orienta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a model to investigate the use of a cylindrical antenna used in the thermal method of recovering through electromagnetic radiation of high-viscosity oil. The antenna has a simple geometry, adapted dipole type, and it can be modelled by using Maxwell s equation. The wavelet transforms are used as basis functions and applied in conjunction with the method of moments to obtain the current distribution in the antenna. The electric field, power and temperature distribution are carefully calculated for the analysis of the antenna as electromagnetic heating. The energy performance is analyzed based on thermo-fluid dynamic simulations at field scale, and through the adaptation in the Steam Thermal and Advanced Processes Reservoir Simulator (STARS) by Computer Modelling Group (CMG). The model proposed and the numerical results obtained are stable and presented good agreement with the results reported in the specialized literature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, fabrication processes for daylight guiding systems based on micromirror arrays are developed, evaluated and optimized.Two different approaches are used: At first, nanoimprint lithography is used to fabricate large area micromirrors by means of Substrate Conformal Imprint Lithography (SCIL).Secondly,a new lithography technique is developed using a novel bi-layered photomask to fabricate large area micromirror arrays. The experimental results showing a reproducible stable process, high yield, and is consuming less material, time, cost and effort.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence of hydrodynamic features in off-equilibrium (1 + 1)-dimensional integrable quantum systems has been the object of increasing attention in recent years. In this Master Thesis, we combine Thermodynamic Bethe Ansatz (TBA) techniques for finite-temperature quantum field theories with the Generalized Hydrodynamics (GHD) picture to provide a theoretical and numerical analysis of Zamolodchikov’s staircase model both at thermal equilibrium and in inhomogeneous generalized Gibbs ensembles. The staircase model is a diagonal (1 + 1)-dimensional integrable scattering theory with the remarkable property of roaming between infinitely many critical points when moving along a renormalization group trajectory. Namely, the finite-temperature dimensionless ground-state energy of the system approaches the central charges of all the minimal unitary conformal field theories (CFTs) M_p as the temperature varies. Within the GHD framework we develop a detailed study of the staircase model’s hydrodynamics and compare its quite surprising features to those displayed by a class of non-diagonal massless models flowing between adjacent points in the M_p series. Finally, employing both TBA and GHD techniques, we generalize to higher-spin local and quasi-local conserved charges the results obtained by B. Doyon and D. Bernard [1] for the steady-state energy current in off-equilibrium conformal field theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis I show a triple new connection we found between quantum integrability, N=2 supersymmetric gauge theories and black holes perturbation theory. I use the approach of the ODE/IM correspondence between Ordinary Differential Equations (ODE) and Integrable Models (IM), first to connect basic integrability functions - the Baxter’s Q, T and Y functions - to the gauge theory periods. This fundamental identification allows several new results for both theories, for example: an exact non linear integral equation (Thermodynamic Bethe Ansatz, TBA) for the gauge periods; an interpretation of the integrability functional relations as new exact R-symmetry relations for the periods; new formulas for the local integrals of motion in terms of gauge periods. This I develop in all details at least for the SU(2) gauge theory with Nf=0,1,2 matter flavours. Still through to the ODE/IM correspondence, I connect the mathematically precise definition of quasinormal modes of black holes (having an important role in gravitational waves’ obervations) with quantization conditions on the Q, Y functions. In this way I also give a mathematical explanation of the recently found connection between quasinormal modes and N=2 supersymmetric gauge theories. Moreover, it follows a new simple and effective method to numerically compute the quasinormal modes - the TBA - which I compare with other standard methods. The spacetimes for which I show these in all details are in the simplest Nf=0 case the D3 brane in the Nf=1,2 case a generalization of extremal Reissner-Nordström (charged) black holes. Then I begin treating also the Nf=3,4 theories and argue on how our integrability-gauge-gravity correspondence can generalize to other types of black holes in either asymptotically flat (Nf=3) or Anti-de-Sitter (Nf=4) spacetime. Finally I begin to show the extension to a 4-fold correspondence with also Conformal Field Theory (CFT), through the renowned AdS/CFT correspondence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the focus is on utilizing metasurfaces to improve radiation characteristics of planar structures. The study encompasses various aspects of metasurface applications, including enhancing antenna radiation characteristics and manipulating electromagnetic (EM) waves, such as polarization conversion and anomalous reflection. The thesis introduces the design of a single-port antenna with dual-mode operation, integrating metasurfaces. This antenna serves as the front-end for a next-generation tag, functioning as a position sensor with identification and energy harvesting capabilities. It operates in the lower European Ultra-Wideband (UWB) frequency range for communication/localization and the UHF band for wireless energy reception. The design aims for a low-profile stack-up that remains unaffected by background materials. Researchers worldwide are drawn to metasurfaces due to their EM wave manipulation capabilities. The thesis also demonstrates how a High-Impedance Surface (HIS) can enhance the antenna's versatility through metasurface application, including conformal design using 3D-printing technology, ensuring adaptability for various deformation and tracking/powering scenarios. Additionally, the thesis explores two distinct metasurface applications. One involves designing an angularly stable super-wideband Circular Polarization Converter (CPC) operating from 11 to 35GHz with an impressive relative impedance bandwidth of 104.3%. The CPC shows a stable response even at oblique incidences up to 40 degrees, with a Peak Cross-Polarization Ratio (PCR) exceeding 62% across the entire band. The second application focuses on an Intelligent Reflective Surface (IRS) capable of redirecting incoming waves in unconventional directions. Tunability is achieved through an artificially developed ferroelectric material (HfZrO) and distributed capacitive elements (IDC) to fine-tune impedance and phase responses at the meta-atom level. The IRS demonstrates anomalous reflection for normal incident waves. These innovative applications of metasurfaces offer promising advancements in antenna design, EM wave manipulation, and versatile wireless communication systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser Powder Bed Fusion (LPBF) permits the manufacturing of parts with optimized geometry, enabling lightweight design of mechanical components in aerospace and automotive and the production of tools with conformal cooling channels. In order to produce parts with high strength-to-weight ratio, high-strength steels are required. To date, the most diffused high-strength steels for LPBF are hot-work tool steels, maraging and precipitation-hardening stainless steels, featuring different composition, feasibility and properties. Moreover, LPBF parts usually require a proper heat treatment and surface finishing, to develop the desired properties and reduce the high roughness resulting from LPBF. The present PhD thesis investigates the effect of different heat treatments and surface finishing on the microstructure and mechanical properties of a hot-work tool steel and a precipitation-hardening stainless steel manufactured via LPBF. The bibliographic section focuses on the main aspects of LPBF, hot-work tool steels and precipitation-hardening stainless steels. The experimental section is divided in two parts. Part A addresses the effect of different heat treatments and surface finishing on the microstructure, hardness, tensile and fatigue behaviour of a LPBF manufactured hot-work tool steel, to evaluate its feasibility for automotive and racing components. Results indicated the possibility to achieve high hardness and strength, comparable to the conventionally produced steel, but a great sensitivity of fatigue strength on defects and surface roughness resulting from LPBF. Part B investigates the effect of different heat treatments on the microstructure, hardness, tensile and notch-impact behaviour of a LPBF produced precipitation-hardening stainless steel, to assess its feasibility for tooling applications. Results indicated the possibility to achieve high hardness and strength also through a simple Direct Aging, enabling heat treatment simplification by exploiting the microstructural features resulting from LPBF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A broad sector of literature focuses on the relationship between fluid dynamics and gravitational systems. This thesis presents results that suggest the existence of a new kind of fluid/gravity duality not based on the holographic principle. The goal is to provide tools that allow us to systematically unearth hidden symmetries for reduced models of cosmology. The focus is on the field space of these models, i.e. the superspace. In fact, conformal isometries of the supermetric leave geodesics in the field space unaltered; this leads to symmetries of the models. An innovative aspect is the use of the Eisenhart-Duval’s lift. Using this method, systems constrained by a potential can be treated as free ones. Moreover, charges explicitly dependent on time, i.e. dynamical, can be found. A detailed analysis is carried out on three basic models of homogenous cosmology: i) flat Friedmann-Lemaître-Robertson-Walker’s isotropic universe filled with a massless scalar field; ii) Schwarzschild’s black hole mechanics and its extension to vacuum (A)dS gravity; iii) Bianchi’s anisotropic type I universe with a massless scalar field. The results show the presence of a hidden Schrödinger’s symmetry which, being intrinsic to both Navier-Stokes’ and Schrödinger’s equations, indicates a correspondence between cosmology and hydrodynamics. Furthermore, the central extension of this algebra explicitly relates two concepts. The first is the number of particles coming from the fluid picture; while the second is the ratio between the IR and UV cutoffs that weighs how much a theory has of “classical” over “quantum”. This suggests a spacetime that emerges from an underlying world which is described by quantum building blocks. These quanta statistically conspire to appear as gravitational phenomena from a macroscopic point of view.