923 resultados para Conductive ceramics
Resumo:
Pinning by second phase particles offers a potent means for limiting grain growth and enhancing superplasticity in alumina-based ceramics. In the present study, a colloidal technique was used to produce green bodies of alumina-yttria composites; at elevated temperatures, the yttria particles react with alumina to produce YAG particles. The densification and high temperature deformation characteristics of alumina-YAG composites were studied using conventional free sintering and sinter-forging, which involves the application of a compressive stress without any lateral constraints. It is shown that the YAG particles retard both densification and grain growth. The experiments indicate also that the presence of YAG particles does not significantly alter the stress exponent for creep deformation.
Resumo:
In contrast to metallic alloys, the mechanical characteristics of superplastic ceramics are very sensitive to minor changes in levels of trace impurities. In the present study, the mechanical behavior of a 2 mol% yttria stabilized tetragonal zirconia was studied in tension and compression in two batches of material, with small variations in levels of trace impurities, to examine the influence of stress axis and impurity content on the deformation behavior. The mechanical properties of the material were characterized in terms of the expression: (epsilon)over dot proportional to sigma(n) where (epsilon)over dot is the strain rate, sigma is the stress and n is termed the stress exponent. The mechanical behavior of the ceramic was identical in tension and compression, for a material with a given level of impurity. The high purity specimens exhibited a transition from a stress exponent of similar to 3 to similar to 2 with an increase in stress, whereas the low purity material displayed only n similar to 2 behavior over the entire stress range studied. Detailed high resolution and analytical electron microscopy studies revealed that there was no amorphous phase at interfaces in both batches of material; however, segregation of Al at interfaces was detected only in the low purity material. The observed transition in stress exponents can be rationalized in terms of two sequential mechanisms: grain boundary sliding with n similar to 2 and interface reaction controlled grain boundary sliding with n similar to 3. The transition from n similar to 3 to similar to 2 occurred at lower stresses with an increase in the grain size and a decrease in the purity level.
Resumo:
An overview of the synthesis of materials under microwave irradiation has been presented based on the work performed recently. A variety of reactions such as direct combination, carbothermal reduction, carbidation and nitridation have been described. Examples of microwave preparation of glasses are also presented. Great advantages of fast, clean and reduced reaction temperature of microwave methods are emphasized. The example of ZrO2-CeO2 ceramics has been used show the extraordinarily fast and effective sintering which occurs in microwave irradiation.
Resumo:
A complex oxalate precursor, CaCu3(TiO)(4)(C2O4)(8)center dot 9H(2)O, (CCT-OX), was synthesized and the precipitate that obtained was confirmed to be monophasic by the wet chemical analyses, X-ray diffraction, FTIR absorption and TG/DTA analyses. The thermal decomposition of this oxalate precursor led to the formation of phase-pure calcium copper titanate, CaCu3Ti4O12, (CCTO) at a parts per thousand yen680A degrees C. The bright-field TEM micrographs revealed that the size of the as synthesized crystallites to be in the 30-80 nm range. The powders so obtained had excellent sinterability resulting in high density ceramics which exhibited giant dielectric constants upto 40000 (1 kHz) at 25A degrees C, accompanied by low dielectric losses.
Resumo:
Direct precipitation of fine powders of lead zirconate titanate (PZT) in the complete range of solid solution, is investigated under hydrothermal conditions, starting from lead oxide and titania/zirconia mixed gels. The perovskite phase is formed in the temperature range of 165 – 340°C. Sequence of the hydrothermal reactions is studied by identifying the intermediate phases. The initial formation of PbO: TiO2 solid solution is followed by the reaction of the same with the remaining mixed gels giving rise to X-ray amorphous PZT phase. Further, through crystallite growth, the X-ray crystalline PZT is formed. This method can be extended for the preparation of PLZT powder as well. The resulting powders are sinterable to high density ceramics.
Resumo:
Attempts to prepare BaSnO3 by the hydrothermal method starting from SnO2·xH2O gel and Ba (OH)2 solution in teflonlined autoclaves at 150–260°C invariably lead to the formation of a hydrated phase, BaSn(OH)6·3H2O. On heating in air or on releasing the pressure Image at ≈260°C, BaSN (OH)6·3H2O converts to BaSnO3 fine powder which involves the formation of an intermediate oxyhydroxide, BaSnO(OH)4. TEM studies show that particle size of the resulting BaSnO3 ranges from 0.2–0.6 μm. Solid solutions of Ba(Ti, Sn) O3 were prepared from (TiO2+SnO2)·xH2O mixed gel and Ba(OH)2 solutions. Single-phase perovskite Ba(Ti, Sn)O3 was obtained up to 35 atom % Sn. Above this composition, the hydrothermal products are mixtures of BaTiO3 (cubic) and BaSn(OH)6·3H2O which on heating at ≈260°C give rise to BaTiO3+BaSnO3. Annealing at 1000°C results in monophasic Ba(Ti, Sn)O3, in the complete range of Sn/Ti. Formation of the hydrated phase is attributed to the amphoteric nature of SnO2·xH2O gel which stabilises Sn(OH)62− anions under higher H2O-pressures and elevated temperatures. The sintering characteristics and dielectric properties of ceramics prepared from these fine powders are presented.
Resumo:
Graphene oxide (GO) is assembled on a gold substrate by a layer-by-layer technique using a self-assembled cystamine monolayer. The negatively charged GO platelets are attached to the positively charged cystamine monolayer through electrostatic interactions. Subsequently, it is shown that the GO can be reduced electrochemically using applied DC bias by scanning the potential from 0 to -1 V vs a saturated calomel electrode in an aqueous electrolyte. The GO and reduced graphene oxide (RGO) are characterized by Raman spectroscopy and atomic force microscopy (AFM). A clear shift of the G band from 1610 cm-1 of GO to 1585 cm-1 of RGO is observed. The electrochemical reduction is followed in situ by micro Raman spectroscopy by carrying out Raman spectroscopic studies during the application of DC bias. The GO and RGO films have been characterized by conductive AFM that shows an increase in the current flow by at least 3 orders of magnitude after reduction. The electrochemical method of reducing GO may open up another way of controlling the reduction of GO and the extent of reduction to obtain highly conducting graphene on electrode materials.
Resumo:
Low concentration of Mn (< 0.05 atom%) added to lanthanide-doped ceramics for enhancing the PTC effect did not show any EPR signal due to Mn in the tetragonal phase. Above Tc (400 K) it showed the six-line signal arising from Mn2+. This is explained on the basis of Mn existing as Mn3+ ion with short relaxation time at room temperature. Oxidation state changes to Mn2+ above Tc; thus Mn3+ acts as an electron trap. This augments the function of activated defect centres (VBa /ag VBa) in diminishing the charge carrier concentration across the phase transformation.
Resumo:
Tie-lines between the corundum and spinel solid solutions have been determined experimentally at 1823 K. Next, activities of FeCr2O4 and FeAl2O4 in the spinel solid solution were determined by combining the tie-line data with literature values for the activities of Cr2O3 and Al2O3 in the corundum phase. Activities and the Gibbs energy of mixing for the spinel solid solution were also obtained from a model based on cation distribution between nonequivalent crystallographic sites in the oxide lattice. The difference between the Gibbs energy of mixing obtained experimentally and from the model has been attributed to a strain enthalpy term which is relatively unchanged in magnitude from the reported at 1373 K. The integral enthalpy of mixing obtained from experimental data at 1373 and 1823 K using the second law is compared with the model result.
Resumo:
The tie lines delineating ion-exchange equilibria between MCr2O4-MAl2O4 spinel solid solution, where M is either Mn or Co, and Cr2O3-Al2O3 solid solution with the corundum structure were determined at 1373 K by electron microprobe and E0AX point count analysis of the oxide phases equilibrated with metallic Co and Au-5% Mn. The component activities in the spinel solid solutions are derived from the tie lines and the thernodynamic data for Cr2O3-Al2O3 soiid solutions available hi the literature. The Gibbs free energies of mixing calculated from the experimental data are discussed in relation to the values derived from the cation distribution a.odel based on the site preference energies and assuming random mixing on both tetrahedral and octahedral sites. Positive deviations from ideality observed in this study suggest a miscibility gap for both series of spinel solid solutions at low temperatures in the absence of oxidation.
Resumo:
SecB, a soluble cytosolic chaperone component of the Secexport pathway, binds to newly synthesized precursor proteins and prevents their premature aggregation and folding and subsequently targets them to the translocation machinery on the membrane. PreMBP, the precursor form of maltose binding protein, has a 26-residue signal sequence attached to the N-terminus of MBP and is a physiological substrate of SecB. We examine the effect of macromolecular crowding and SecB on the stability and refolding of denatured preMBP and MBP. PreMBP was less stable than MBP (ΔTm =7( 0.5 K) in both crowded and uncrowded solutions. Crowding did not cause any substantial changes in the thermal stability ofMBP(ΔTm=1(0.4 K) or preMBP (ΔTm=0(0.6 K), as observed in spectroscopically monitored thermal unfolding experiments. However, both MBP and preMBP were prone to aggregation while refolding under crowded conditions. In contrast to MBP aggregates, which were amorphous, preMBP aggregates form amyloid fibrils.Under uncrowded conditions, a molar excess of SecB was able to completely prevent aggregation and promote disaggregation of preformed aggregates of MBP. When a complex of the denatured protein and SecB was preformed, SecB could completely prevent aggregation and promote folding of MBP and preMBP even in crowded solution. Thus, in addition to maintaining substrates in an unfolded, export-competent conformation, SecB also suppresses the aggregation of its substrates in the crowded intracellular environment. SecB is also able to promote passive disaggregation of macroscopic aggregates of MBP in the absence of an energy source such as ATP or additional cofactors. These experiments also demonstrate that signal peptide can reatly influence protein stability and aggregation propensity.
Resumo:
Fine powders consisting of 0.1–0.5 μm size crystallites of CaTiO3 are prepared at 150–200°C by the hydrothermal method starting from hydrated titania gel and reactive calcium oxide suspended as an aqueous slurry in an autoclave. The resulting high-purity CaTiO3 is characterised by TEM, X-ray powder diffraction, chemical analyses and sintering characteristics. The hydrothermally prepared CaTiO3 powders are sinterable to high-density ceramics below 1400°C. The dc conductivity behaviour of the chemically reduced ceramics is presented.
Resumo:
Treatment of joint diseases such as osteoarthritis is difficult and requires extensive developments for adequate solutions to emerge. Continued innovation in projects explored in this thesis may be beneficial to understanding the requirements of the joint environment. This may then lead to constructs that perform desirably from both mechanical and biological standpoints, resulting in complete, tissue-engineered osteochondral solutions. This thesis investigated specific scaffold designs for bone and osteochondral tissue engineering, as well as the formation of complex criteria on which cartilage hydrogel scaffolds may be assessed. The combination of hydrogels and ceramics were found to maintain chondrogenesis, while the concentration of photoinitiators in photocrosslinkable hydrogel systems may be optimised to maximise mechanical properties and cell viability. Finally, viscoelasticity of hydrogel blends was assessed using oscillatory motion, demonstrating the property is tailorable.
Resumo:
Fine powders consisting of aggregated submicron crystallites of Ba(Ti,Zr)O3 in the complete range of Ti/Zr ratios are prepared at 85–130°C by hydrothermal method, starting from TiO2 + ZrO2 · xH2O mixed gel and Ba(OH)2 solution. The products obtained below 110°C incorporate considerable amounts of H2O and OH− within the lattice. As-prepared BaTiO3 is cubic and converts to tetragonal phase after the heat treatment at 1200°C, accompanied by the loss of residual hydroxyl ions. TEM investgations of the growth features show a transformation of the gel to the crystallite. Ba2+ ions entering the gel produce chemical changes within the gel, followed by dehydration, resulting in a cubic perovskite phase irrespective of Ti/Zr. The sintering properties of these powders to fine-grained, high density ceramics and their dielectric properties are presented.
Resumo:
Standard Gibbs energies of formation of oxysulfides of cerium and yttrium from their respective oxedes were determined using solid oxide galvanic cells incorporating calcia-stabilized zirconia as the electrolyte in the temperature range 870–1120 K. The sulfur potential over the electrode containing the oxide and oxysulfide was fixed by a buffer mixture of Ag + Ag2S. A small amount of CaH2 was added to the buffer to generate an equilibrium ratio of H2S and H2 species in a closed system containing the buffer and the electrode. The sulfur potential is transmitted to the electrode via the gas phase. The results can be summarized by the equations 2left angle bracketCeO2right-pointing angle bracket+1/2(S2)→left angle bracketCe2O2Sright-pointing angle bracket+(O2) ΔG°=430600−109·7T(±400)J mol−1 left angle bracketY2O3right-pointing angle bracket+1/2(S2)→left angle bracketY2O2Sright-pointing angle bracket+1/2(O2) ΔG°=114780−1·45T(±200)J mol−1 The values are compared with data reported in the literature. The stability field diagram for the Ce---O---S system has been developed using the results of this study for Ce2O2S and data for other phases from the literature.