934 resultados para Compression-molding technique
Resumo:
This paper explains the Genetic Algorithm (GA) evolution of optimized wavelet that surpass the cdf9/7 wavelet for fingerprint compression and reconstruction. Optimized wavelets have already been evolved in previous works in the literature, but they are highly computationally complex and time consuming. Therefore, in this work, a simple approach is made to reduce the computational complexity of the evolution algorithm. A training image set comprised of three 32x32 size cropped images performed much better than the reported coefficients in literature. An average improvement of 1.0059 dB in PSNR above the classical cdf9/7 wavelet over the 80 fingerprint images was achieved. In addition, the computational speed was increased by 90.18 %. The evolved coefficients for compression ratio (CR) 16:1 yielded better average PSNR for other CRs also. Improvement in average PSNR was experienced for degraded and noisy images as well
Resumo:
Analytical expressions for the Green’s function of an annular elliptical ring microstrip antenna (AERMA) are developed and reported. The modal, radiation and input impedance characteristics of the TM, modes are determined from these expressions. The resonant frequencies of odd modes are greater than that of the even modes for all TMnl modes (n = 1, 2, 3, ...) udke elliptical microstrip structures. The radiation pattern and input imedance curves of TMI2 mode on comparison with available experimental result shows good agreement whch provides an independent validation to this technique. The performance of the AERMA is then investigated as a function of thickness and substrate dielectric permittivity.
Resumo:
As the technologies for the fabrication of high quality microarray advances rapidly, quantification of microarray data becomes a major task. Gridding is the first step in the analysis of microarray images for locating the subarrays and individual spots within each subarray. For accurate gridding of high-density microarray images, in the presence of contamination and background noise, precise calculation of parameters is essential. This paper presents an accurate fully automatic gridding method for locating suarrays and individual spots using the intensity projection profile of the most suitable subimage. The method is capable of processing the image without any user intervention and does not demand any input parameters as many other commercial and academic packages. According to results obtained, the accuracy of our algorithm is between 95-100% for microarray images with coefficient of variation less than two. Experimental results show that the method is capable of gridding microarray images with irregular spots, varying surface intensity distribution and with more than 50% contamination
Resumo:
Expanded polystyrene (EPS) constitutes a considerable part of thermoplastic waste in the environment in terms of volume. In this study, this waste material has been utilized for blending with silica-reinforced natural rubber (NR). The NR/EPS (35/5) blends were prepared by melt mixing in a Brabender Plasticorder. Since NR and EPS are incompatible and immiscible a method has been devised to improve compatibility. For this, EPS and NR were initially grafted with maleic anhydride (MA) using dicumyl peroxide (DCP) to give a graft copolymer. Grafting was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. This grafted blend was subsequently blended with more of NR during mill compounding. Morphological studies using Scanning Electron Microscopy (SEM) showed better dispersion of EPS in the compatibilized blend compared to the noncompatibilized blend. By this technique, the tensile strength, elongation at break, modulus, tear strength, compression set and hardness of the blend were found to be either at par with or better than that of virgin silica filled NR compound. It is also noted that the thermal properties of the blends are equivalent with that of virgin NR. The study establishes the potential of this method for utilising waste EPS
Resumo:
Photothermal deflection technique (PTD) is a non-destructive tool for measuring the temperature distribution in and around a sample, due to various non-radiative decay processes occurring within the material. This tool was used to measure the carrier transport properties of CuInS2 and CuInSe2 thin films. Films with thickness <1 μm were prepared with different Cu/In ratios to vary the electrical properties. The surface recombination velocity was least for Cu-rich films (5×105 cm/s for CuInS2, 1×103 cm/s for CuInSe2), while stoichiometric films exhibited high mobility (0.6 cm2/V s for CuInS2, 32 cm2/V s for CuInSe2) and high minority carrier lifetime (0.35 μs for CuInS2, 12 μs for CuInSe2
Resumo:
SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined
Resumo:
Thin film solar cells having structure CuInS2/In2S3 were fabricated using chemical spray pyrolysis (CSP) technique over ITO coated glass. Top electrode was silver film (area 0.05 cm2). Cu/In ratio and S/Cu in the precursor solution for CuInS2 were fixed as 1.2 and 5 respectively. In/S ratio in the precursor solution for In2S3 was fixed as 1.2/8. An efficiency of 0.6% (fill factor -37.6%) was obtained. Cu diffusion to the In2S3 layer, which deteriorates junction properties, is inevitable in CuInS2/In2S3 cell. So to decrease this effect and to ensure a Cu-free In2S3 layer at the top of the cell, Cu/In ratio was reduced to 1. Then a remarkable increase in short circuit current density was occurred from 3 mA/cm2 to 14.8 mA/cm2 and an efficiency of 2.13% was achieved. Also when In/S ratio was altered to 1.2/12, the short circuit current density increased to 17.8 mA/cm2 with an improved fill factor of 32% and efficiency remaining as 2%. Thus Cu/In and In/S ratios in the precursor solutions play a crucial role in determining the cell parameters
Resumo:
This work projects photoluminescence (PL) as an alternative technique to estimate the order of resistivity of zinc oxide (ZnO) thin films. ZnO thin films, deposited using chemical spray pyrolysis (CSP) by varying the deposition parameters like solvent, spray rate, pH of precursor, and so forth, have been used for this study. Variation in the deposition conditions has tremendous impact on the luminescence properties as well as resistivity. Two emissions could be recorded for all samples—the near band edge emission (NBE) at 380 nm and the deep level emission (DLE) at ∼500 nm which are competing in nature. It is observed that the ratio of intensities of DLE to NBE ( DLE/ NBE) can be reduced by controlling oxygen incorporation in the sample. - measurements indicate that restricting oxygen incorporation reduces resistivity considerably. Variation of DLE/ NBE and resistivity for samples prepared under different deposition conditions is similar in nature. DLE/ NBE was always less than resistivity by an order for all samples.Thus from PL measurements alone, the order of resistivity of the samples can be estimated.
Resumo:
Hindi
Resumo:
HINDI
Resumo:
Recurrent iterated function systems (RIFSs) are improvements of iterated function systems (IFSs) using elements of the theory of Marcovian stochastic processes which can produce more natural looking images. We construct new RIFSs consisting substantially of a vertical contraction factor function and nonlinear transformations. These RIFSs are applied to image compression.
Resumo:
This study analyzes the linear relationship between climate variables and milk components in Iran by applying bootstrapping to include and assess the uncertainty. The climate parameters, Temperature Humidity Index (THI) and Equivalent Temperature Index (ETI) are computed from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis (2002–2010). Milk data for fat, protein (measured on fresh matter bases), and milk yield are taken from 936,227 milk records for the same period, using cows fed by natural pasture from April to September. Confidence intervals for the regression model are calculated using the bootstrap technique. This method is applied to the original times series, generating statistically equivalent surrogate samples. As a result, despite the short time data and the related uncertainties, an interesting behavior of the relationships between milk compound and the climate parameters is visible. During spring only, a weak dependency of milk yield and climate variations is obvious, while fat and protein concentrations show reasonable correlations. In summer, milk yield shows a similar level of relationship with ETI, but not with temperature and THI. We suggest this methodology for studies in the field of the impacts of climate change and agriculture, also environment and food with short-term data.
Resumo:
We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.
Resumo:
Image analysis and graphics synthesis can be achieved with learning techniques using directly image examples without physically-based, 3D models. In our technique: -- the mapping from novel images to a vector of "pose" and "expression" parameters can be learned from a small set of example images using a function approximation technique that we call an analysis network; -- the inverse mapping from input "pose" and "expression" parameters to output images can be synthesized from a small set of example images and used to produce new images using a similar synthesis network. The techniques described here have several applications in computer graphics, special effects, interactive multimedia and very low bandwidth teleconferencing.
Resumo:
This paper presents a new paradigm for signal reconstruction and superresolution, Correlation Kernel Analysis (CKA), that is based on the selection of a sparse set of bases from a large dictionary of class- specific basis functions. The basis functions that we use are the correlation functions of the class of signals we are analyzing. To choose the appropriate features from this large dictionary, we use Support Vector Machine (SVM) regression and compare this to traditional Principal Component Analysis (PCA) for the tasks of signal reconstruction, superresolution, and compression. The testbed we use in this paper is a set of images of pedestrians. This paper also presents results of experiments in which we use a dictionary of multiscale basis functions and then use Basis Pursuit De-Noising to obtain a sparse, multiscale approximation of a signal. The results are analyzed and we conclude that 1) when used with a sparse representation technique, the correlation function is an effective kernel for image reconstruction and superresolution, 2) for image compression, PCA and SVM have different tradeoffs, depending on the particular metric that is used to evaluate the results, 3) in sparse representation techniques, L_1 is not a good proxy for the true measure of sparsity, L_0, and 4) the L_epsilon norm may be a better error metric for image reconstruction and compression than the L_2 norm, though the exact psychophysical metric should take into account high order structure in images.