953 resultados para Complex combinatorial problem
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Resumo:
RESUMO - A presente investigação procura descrever e compreender como a estratégia influencia a liderança e como esta por sua vez interage nos processos de inovação e mudança, em organizações de saúde. Desconhecem-se estudos anteriores, em Portugal, sobre este problema de investigação e da respectiva problemática teórica. Trata-se de um estudo exploratório e descritivo que envolveu 5 organizações de saúde, 4 portuguesas e 1 espanhola, 4 hospitais (dois privados e uma unidade local de saúde). Utilizou-se uma abordagem mista de investigação (qualitativa e quantitativa), que permitiu compreender, através do estudo de caso, como se articulam a estratégia, a liderança e a inovação nessas cinco organizações de saúde. Os resultados do estudo empírico foram provenientes da recolha de dados efectuada através de observação directa e estruturada, entrevistas com actores-chave, documentos em suporte de papel e digital, e ainda inquérito por questionário de auto-resposta a uma amostra (n=165) de actores do line e do staff (Administradores, Directores de Serviço/Departamento, Enfermeiros Chefe e Técnicos Coordenadores) das cinco organizações de saúde. Tanto o modelo de Miles & Snow (estratégia organizacional), como o modelo dos valores contrastantes de Quinn (cultura organizacional e liderança), devidamente adaptados, mostram-se heurísticos e provam poder aplicar-se às organizações de saúde, apesar a sua complexidade e especificidade. Tanto as organizações do sector público como do sector privado e organizações públicas concessionadas (parcerias público privadas) podem ser acompanhadas e monitorizadas nos seus processos de inovação e mudança, associados aos tipos de cultura, liderança ou estratégia organizacionais adoptadas. As organizações de saúde coabitam num continuum, onde o ambiente (quer interno quer externo) e o tempo são factores decisivos que condicionam a estratégia a adoptar. Também aqui, em função da realidade dinâmica e complexa onde a organização se move, não há tipologias puras. Há, sim, uma grande plasticidade e flexibilidade organizacionais. Quanto aos líderes, exercem habitualmente a autoridade formal, pela via da circular normativa. Não são pares (nem primi inter pares), colocam-se por vezes numa posição de superioridade, quando o mais adequado seria a relação de parceria, cooperação e procura de consensos, com todos os colaboradores, afim de serem eles os verdadeiros protagonistas e facilitadores da mudança e das inovações. Como factores facilitadores da inovação e da mudança, encontrámos nas organizações de saúde estudadas o seguinte: facilidade de aprender; visão/missão adequadas; ausência de medo de falhar; e como factores inibidores: falta de articulação entre serviços/departamentos; estrutura organizacional (no sector público muito verticalizada e no sector privado mais horizontalizada); resistência à mudança; falta de tempo; falha no tempo de reacção (o tempo útil para a tomada de decisão é, por vezes, ultrapassado). --------ABSTRACT - The present research seeks to describe and understand how strategy influences leadership and how this in turn interacts in the process of innovation and change in health organizations. Previous studies on these topics are unknown in Portugal, about this research problem and its theoretical problem. This is an exploratory and descriptive study that involved 5 health organizations, 4 Portuguese and 1 Spanish. We used a mixed approach of research (qualitative and quantitative), which enabled us to understand, through case study, how strategy and leadership were articulated with innovation in these five health organizations. The results of the empirical study came from data collection through direct observation, interviews with key actors, documents and survey questionnaire answered by 165 participants of line and staff (Administrators, Medical Directors of Service /Department, Head Nurses and Technical Coordinators) of the five health organizations. Despite their complexity and specificity, both the model of Miles & Snow (organizational strategy) and the model of the Competing Values Framework of Quinn (organizational culture and leadership), suitably adapted, have proven heuristic power and able to be apply to healthcare organizations. Both public sector organizations, private and public organizations licensed (public-private partnerships) can be tracked and monitored in their processes of innovation and change in order to understand its kind of culture, leadership or organizational strategy adopted. Health organizations coexist in a continuum, where the environment (internal and external) and time are key factors which determine the strategy to adopt. Here too depending on the dynamic and complex reality where the organization moves, there are no pure types. There is indeed a great organizational plasticity and flexibility. Leaders usually carry the formal authority by circular normative. They are not pairs (or primi inter pares). Instead they are, sometimes, in a position of superiority, when the best thing is partnership, collaboration, cooperation, building consensus and cooperation with all stakeholders, in order that they are the real protagonists and facilitators of change and innovation. As factors that facilitate innovation and change, we found in health organizations studied, the following: ease of learning; vision / mission appropriate; absence of fear of failure, and as inhibiting factors: lack of coordination between agencies / departments; organizational structure (in the public sector it is too vertical and in the private sector it is more horizontal); resistance to change; lack of time and failure in the reaction time (the time for decision making is sometimes exceeded).
Resumo:
A otimização nos sistemas de suporte à decisão atuais assume um carácter fortemente interdisciplinar relacionando-se com a necessidade de integração de diferentes técnicas e paradigmas na resolução de problemas reais complexos, sendo que a computação de soluções ótimas em muitos destes problemas é intratável. Os métodos de pesquisa heurística são conhecidos por permitir obter bons resultados num intervalo temporal aceitável. Muitas vezes, necessitam que a parametrização seja ajustada de forma a permitir obter bons resultados. Neste sentido, as estratégias de aprendizagem podem incrementar o desempenho de um sistema, dotando-o com a capacidade de aprendizagem, por exemplo, qual a técnica de otimização mais adequada para a resolução de uma classe particular de problemas, ou qual a parametrização mais adequada de um dado algoritmo num determinado cenário. Alguns dos métodos de otimização mais usados para a resolução de problemas do mundo real resultaram da adaptação de ideias de várias áreas de investigação, principalmente com inspiração na natureza - Meta-heurísticas. O processo de seleção de uma Meta-heurística para a resolução de um dado problema é em si um problema de otimização. As Híper-heurísticas surgem neste contexto como metodologias eficientes para selecionar ou gerar heurísticas (ou Meta-heurísticas) na resolução de problemas de otimização NP-difícil. Nesta dissertação pretende-se dar uma contribuição para o problema de seleção de Metaheurísticas respetiva parametrização. Neste sentido é descrita a especificação de uma Híperheurística para a seleção de técnicas baseadas na natureza, na resolução do problema de escalonamento de tarefas em sistemas de fabrico, com base em experiência anterior. O módulo de Híper-heurística desenvolvido utiliza um algoritmo de aprendizagem por reforço (QLearning), que permite dotar o sistema da capacidade de seleção automática da Metaheurística a usar no processo de otimização, assim como a respetiva parametrização. Finalmente, procede-se à realização de testes computacionais para avaliar a influência da Híper- Heurística no desempenho do sistema de escalonamento AutoDynAgents. Como conclusão genérica, é possível afirmar que, dos resultados obtidos é possível concluir existir vantagem significativa no desempenho do sistema quando introduzida a Híper-heurística baseada em QLearning.
Resumo:
Mycobacterium avium complex (MAC) is frequently isolated from patients with late complications of Acquired Immunodeficiency Syndrome (AIDS), especially in North America and Europe. However, its isolation from the central nervous system (CNS) has been seldom reported in these countries. MAC infections in AIDS patients in African and Latin American countries are believed to be uncommon. We report the isolation of MAC from cerebrospinal fluid (CSF) of 11 AIDS patients out of 1723 (0.63%) seen at "Centro de Referência e Treinamento - AIDS", São Paulo and discuss the significance of its isolation.
Resumo:
Before the AIDS pandemia, the Mycobacterium avium complex (MAC) was responsible in most cases for the pneumopathies that attack patients with basic chronic pulmonary diseases such as emphysema and chronic bronchitis36. In 1981, with the advent of the acquired immunodeficiency syndrome (AIDS), MAC started to represent one of the most frequent bacterial diseases among AIDS patients, with the disseminated form of the disease being the major clinical manifestation of the infection8. Between January 1989 and February 1991, the Section of Mycobacteria of the Adolfo Lutz Institute, São Paulo, isolated MAC from 103 patients by culturing different sterile and no-sterile processed specimens collected from 2304 patients seen at the AIDS Reference and Training Center and/or Emilio Ribas Infectology Institute. Disseminated disease was diagnosed in 29 of those patients on the basis of MAC isolation from blood and/or bone marrow aspirate. The other 74 patients were divided into categories highly (5), moderately (26) and little suggestive of disease (43) according to the criteria of DAVIDSON (1989)10. The various criteria for MAC isolation from sterile and non-sterile specimens are discussed.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Informática, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
A exploração do meio subaquático utilizando visão computacional é ainda um processo complexo. Geralmente são utilizados sistemas de visão baseados em visão stereo, no entanto, esta abordagem apresenta limitações, é pouco precisa e é exigente em termos computacionais quando o meio de operação é o subaquático. Estas limitações surgem principalmente em dois cenários de aplicação: quando existe escassez de iluminação e em operações junto a infraestruturas subaquáticas. Consequentemente, a solução reside na utilização de fontes de informação sensorial alternativas ou complementares ao sistema de visão computacional. Neste trabalho propõe-se o desenvolvimento de um sistema de percepção subaquático que combina uma câmara e um projetor laser de um feixe em linha, onde o projetor de luz estruturada _e utilizado como fonte de informação. Em qualquer sistema de visão computacional, e ainda mais relevante em sistemas baseados em triangulação, a sua correta calibração toma um papel fulcral para a qualidade das medidas obtidas com o sistema. A calibração do sistema de visão laser foi dividida em duas etapas. A primeira etapa diz respeito à calibração da câmara, onde são definidos os parâmetros intrínsecos e os parâmetros extrínsecos relativos a este sensor. A segunda etapa define a relação entre a câmara e o laser, sendo esta etapa necessária para a obtenção de imagens tridimensionais. Assim, um dos principais desafios desta dissertação passou por resolver o problema da calibração inerente a este sistema. Desse modo, foi desenvolvida uma ferramenta que requer, pelo menos duas fotos do padrão de xadrez, com perspectivas diferentes. O método proposto foi caracterizado e validado em ambientes secos e subaquáticos. Os resultados obtidos mostram que o sistema _e preciso e os valores de profundidade obtidos apresentam um erro significativamente baixo (inferiores a 1 mm), mesmo com uma base-line (distância entre a centro óptico da câmara e o plano de incidência do laser) reduzida.
Resumo:
From 1950 to 1990 a total of 45,862 strains (31,517 isolates from human sources, and 14,345 of non-human origin) were identified at Instituto Adolfo Lutz. No prevalence of any serovars was seen during the period 1950-66 among human sources isolates. Important changing pattern was seen in 1968, when S. Typhimurim surprisingly increased becoming the prevalent serovar in the following decades. During the period of 1970-76, S. Typhimurium represented 77.7% of all serovars of human origin. Significant rise in S. Agona isolation as well as in the number of different serovars among human sources strains were seen in the late 70' and the 80's. More than one hundred different serovars were identified among non-human origin strains. Among serovars isolated from human sources, 74.9%, 15.5%, and 3.7% were recovered from stool, blood, and cerebrospinal fluid cultures, respectively. The outbreak of meningitis by S. Grumpensis in the 60's, emphasizes the concept that any Salmonella serovars can be a cause of epidemics, mainly of the nosocomial origin. This evaluation covering a long period shows the important role of the Public Health Laboratory in the surveillance of salmonellosis, one of the most frequent zoonosis in the world.
Resumo:
A malária constitui um problema de saúde pública, que tem vindo a agravar-se, sendo crescente a necessidade de estratégias renovadas para o seu controlo, como a interrupção do ciclo esporogónico. Deste modo, é essencial compreender as respostas imunológicas de Anopheles anti-Plasmodium. Demonstrou-se anteriormente, que a inibição de transglutaminases, enzimas que participam em vários processos biológicos ao catalisarem a formação de ligações covalentes entre péptidos, agrava a infecção em mosquitos pelo parasita. O presente trabalho tem por objectivo caracterizar as transglutaminases AGAP009098 e AGAP009100 de Anopheles gambiae. Os métodos utilizados para este efeito foram: a sequenciação de regiões dos genes AGAP009098 e AGAP009100; a clonagem molecular de fragmentos da região codificante do gene AGAP009098, usando o vector plasmídico pET–28a(+) e Escherichia coli como sistema de expressão; e PCR em Tempo Real para analisar a expressão relativa dos genes AGAP009098 e AGAP009100 nos diferentes os estádios de desenvolvimento. AGAP009098 é expressa ubiquamente e AGAP009100 a partir do estádio pupa. Estes resultados apontam para a conclusão de que AGAP009098 e AGAP009100 poderão desempenhar funções em processos biológicos relevantes, por exemplo na defesa imunitária, ou no desenvolvimento. Os péptidos recombinantes, obtidos a partir da clonagem com sucesso de fragmentos da região codificante do gene AGAP009098, constituem uma ferramenta importante para averiguar a função destas TGases, no futuro.
Resumo:
The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.
Resumo:
In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.
Resumo:
RESUMO - A segurança dos doentes é, actualmente, um princípio fundamental dos cuidados de saúde. Apesar desta realidade, cada ponto no processo de prestação de cuidados contém um certo grau de insegurança inerente. Os eventos adversos podem resultar de problemas na prática, produtos, processos ou sistemas. A melhoria da segurança do doente implica um esforço de todo um sistema complexo, envolvendo uma ampla gama de acções de melhoria do desempenho, segurança e gestão ambiental de risco, incluindo, entre outras prioridades, a prática de cuidados de saúde em ambiente seguro e com a melhor qualidade. É sabido que todos os anos morrem nos hospitais portugueses, cerca de três mil pessoas, devido a erros cometidos pelos profissionais de saúde. Compreender o erro humano e intervir de forma adequada nas suas causas, implica, muito mais que uma avaliação do facto em si, mas uma avaliação de toda a estrutura onde é passível de ocorrer um erro. São inúmeros os factores que estão relacionados com esta temática, sendo os factores humanos, aqueles que poderão merecer alguma reflexão, pois são ainda algo omitidos nas orientações de gestão e nas considerações de chefias. Assim sendo, pretende-se que, com este projecto de investigação, através de uma revisão da literatura, sejam identificados os vários factores humanos que influenciam o desempenho dos profissionais de saúde, envolvidos na prestação directa de cuidados. Estes factores reflectem-se na segurança dos cuidados de saúde e na melhoria da qualidade prestados nas instituições de saúde. Face aos resultados conclusivos após a revisão de literatura, é verificado que os factores humanos que influenciam o desempenho dos profissionais de saúde são: comunicação e partilha de informação; conhecimento e formação; liderança; trabalho em equipa; cultura de segurança e aprendizagem; carga de trabalho; exigências físicas e ambiente de trabalho. É esperado que o contributo deste trabalho promova o conhecimento em torno desta temática e que se apresente como o início de uma aposta na valorização, cada vez mais importante, mas ainda limitada, destes valores intangíveis da gestão – os factores humanos. ----------------------------------- ABSTRACT - Patient safety is, nowadays, a fundamental principle of health care. Despite this fact, each point in the process of care contains an inherent degree of uncertainty. Adverse events may result from problems in practice, products, processes or systems. Improving patient safety requires an effort of a whole complex system, involving a wide range of measures to improve performance, safety and environmental risk management, including, among other priorities, the practice of health care in a safe environment and the best quality. It is known that every year die, in Portuguese hospitals, around three thousand people, due to mistakes made by health professionals. To understand human error and intervene as appropriate in their causes, it is required much more than an assessment of the fact itself, but an assessment of the whole structure where it is likely to occur. There are countless factors that are related to this issue, but human factors, those who may deserve some consideration, are still left out in management guidelines and supervisors considerations. Therefore, this research project seeks to determine, through a literature review, the identification of various human factors that influence the performance of healthcare providers involved in direct provision of care. The aim is also to know which factors are reflected in safety healthcare and how they are, in fact, crucial in the performance of professionals and in the promotion of quality and safety of the healthcare provided in healthcare institutions. Given the conclusive results after a review of literature, it is found that the human factors that influence the performance of health professionals are: communicating and sharing information, knowledge and training, leadership, teamwork, safety culture and learning; workload, physical demands and work environment. It is expected that this project may contribute to advance of the knowledge regarding this problem and be an essential tool to the beginning of a reliance on the development, increasingly important but still limited, of these intangibles management values – the human factors.