986 resultados para Combined lethal toxicity
Resumo:
Lepidopleurida is the earliest diverged group of living polyplacophoran molluscs. They are found predominantly in the deep sea, including sunken wood, cold seeps, other abyssal habitats, and a few species are found in shallow water. The group is morphologically identified by anatomical features of their gills, sensory aesthetes, and gametes. Their shell features closely resemble the oldest fossils that can be identified as modern polyplacophorans. We present the first molecular phylogenetic study of this group, and also the first combined phylogenetic analysis for any chiton, including three gene regions and 69 morphological characters. The results show that Lepidopleurida is unambiguously monophyletic, and the nine genera fall into five distinct clades, which partly support the current view of polyplacophoran taxonomy. The genus Hanleyella Sirenko, 1973 is included in the family Protochitonidae, and Ferreiraellidae constitutes another distinct clade. The large cosmopolitan genus Leptochiton Gray, 1847 is not monophyletic; Leptochiton and Leptochitonidae sensu stricto are restricted to North Atlantic and Mediterranean taxa. Leptochitonidae s. str. is sister to Protochitonidae. The results also suggest two separate clades independently inhabiting sunken wood substrates in the south-west Pacific. Antarctic and other chemosynthetic-dwelling species may be derived from wood-living species. Substantial taxonomic revision remains to be done to resolve lepidopleuran classification, but the phylogeny presented here is a dramatic step forward in clarifying the relationships within this interesting group.
Resumo:
The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multi-walled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.
Resumo:
The rate of uptake of Endosulfan by Mytilus edulis L. exposed to pesticide concentrations of 0.1, 0.5, and 1.0 mg/l, and its subsequent elution on removal to clean sea water, was investigated. Higher residue levels were recorded for mussels exposed to higher concentrations of the pesticide, but concentration factors were reduced. There was a rapid initial fall in tissue residue levels on transfer to clean sea water due, it is suggested, to elution of Endosulfan adsorbed on particulate matter assimilated in the gut. The spawning period was prolonged at higher concentrations and, at 1.0 mg/l, the onset of spawning was delayed, possibly due to interference with gamonic action. At 0.1 mg/l, the minor protraction of the spawning period may reflect the effect of experimental tank conditions. No seasonal trend was obvious, and there was an exaggeration of the expected fall in condition in mussels exposed to higher concentrations of Endosulfan. In controls, the expected seasonal trend was reduced.
Resumo:
Chlorinated hydrocarbon pesticides are now present in low concentration in most waters. While generally not causing direct mortality so far as we know, they may well have sub-lethal effects, reducing the health and viability of marine organisms. In this study the effect of Endosulfan, DDT and dieldrin on respiration, heart beat and burrowing of some marine bivalves has been examined.
Resumo:
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.
Resumo:
Many different immunochemical platforms exist for the screening of naturally occurring contaminants in food from the low cost enzyme linked immunosorbent assays (ELISA) to the expensive instruments such as optical biosensors based on the phenomenon of surface plasmon resonance (SPR). The primary aim of this study was to evaluate and compare a number of these platforms to assess their accuracy and precision when applied to naturally contaminated samples containing HT-2/T-2 mycotoxins. Other important factors considered were the speed of analysis, ease of use (sample preparation techniques and use of the equipment) and ultimately the cost implications. The three screening procedures compared included an SPR biosensor assay, a commercially available ELISA and an enzyme-linked immunomagnetic electrochemical array (ELIME array). The qualitative data for all methods demonstrated very good overall agreements with each other, however on comparison with mass spectrometry confirmatory results, the ELISA and SPR assay performed slightly better than the ELIME array, exhibiting an overall agreement of 95.8% compared to 91.7%. Currently, SPR is more costly than the other two platforms and can only be used in the laboratory whereas in theory both the ELISA and ELIME array are portable and can be used in the field, but ultimately this is dependent on the sample preparation techniques employed. Sample preparative techniques varied for all methods evaluated, the ELISA was the most simple to perform followed by that of the SPR method. The ELIME array involved an additional clean-up step thereby increasing both the time and cost of analysis. Therefore in the current format, field use would not be an option for the ELIME array. In relation to speed of analysis, the ELISA outperformed the other methods.