990 resultados para Cold-formed rectangular hollow section
Resumo:
Selostus: Pelto- ja puutarhakasvien kylmänkestävyystutkimus Suomessa
Resumo:
Per the guidance of the Legislative Elder Abuse Prevention and Intervention Interim Committee, a prioritization of the implementation recommendations and proposed legislation are below listed in the order determined in the 2012 Elder Abuse Task Force Report.
Resumo:
The average thickness of the existing asphalt cement concrete (ACC) along route E66 in Tama County was 156 mm (6.13 in.). The rehabilitation strategy called for widening the base using the top 75 mm (3 in.) of the existing ACC by a recycling process involving cold milling and mixing with additional emulsion/rejuvenator. The material was then placed into a widening trench and compacted to match the level of the milled surface. The project had the following results: (1) Cold recycled ACC pavement provided adequate pavement structure for a low volume road; (2) Premature cracking of the ACC in the widened pavement area was caused by compaction of the mix over a saturated subgrade; and (3) Considerably less transverse and longitudinal cracking was observed with 75 mm (3 in.) of cold recycled ACC and a 50 mm (2 in.) hot mix ACC overlay than with a conventional hot mix overlay with no cold recycling. More research should be done on efficient construction procedures and incorporating longer test sections for proper evaluation.
Resumo:
The objective of this project was to determine if any of several cutback and emulsified asphalt plant mixed and road mixed overlays had the ability to resist thermal cracking at low temperatures without inducing shoving and/or ruttinq at high temperatures. A 2.6 mile section of Osceola County road A-34 and a 7.0 mile section of A-46 were divided into 14 test sections of various lengths. After six years, results show an MC-3000 asphalt cutback cold mix can reduce the amount of reflective cracking when compared to an AC-5 hot mix. This can be done without inducing high temperature related problems. Cold road mixing can be effective in reducing cracking on low volume roads. However, more experience is required if the full benefits of road mixing are to be realized.
Resumo:
In view of the energy, environmental, and economic advantages of the foamed asphalt process using local aggregates in cold mixes and the promising results from Research Project HR-212, a 4.2-mile section of county road in Muscatine County was built with foamed asphalt and local aggregates during August-September 1983. Extensive laboratory evaluation was carried out on five plant mixes representing foamed mixes used in the nine test sections, a laboratory prepared foamed mix, and a laboratory prepared hot mix similar to Plant Mix 1. The foamed mixes were compacted, cured under 15 curing conditions and tested for bulk specific gravity, Marshall stability at 77° F and at 140° F, cured moisture content, resilient modulus and effects of moisture damage due to freeze-thaw cycles, water soaking, and vacuum saturation. In addition, four sets of 83 core samples were taken at 1 to 15 months and tested for moisture content, specific gravity, Marshall stability, and resilient modulus. In summary, the test road has performed satisfactorily for almost two years. The few early construction problems encountered were to be expected for experimental projects dealing with new materials and technologies. Overall results to date are encouraging and foamed asphalt mixes have proved to have the potential as a viable base material in areas where marginal aggregates are available. It is hoped and expected that performance evaluation of the test sections will be continued and that more foamed asphalt trial projects will be constructed and monitored so that experiences and findings from this project can be verified and mix design criteria can be gradually established. For future foamed asphalt projects it is recommended that anti-stripping additives, such as hydrated lime, be added in view of the potential moisture susceptibility of foamed mixes observed in the laboratory evaluation.
Resumo:
Iowa's secondary roads contain nearly 15,000 bridges which are less than 40 ft (12.2 m) in length. Many of these bridges were built several decades ago and need to be replaced. Box culvert construction has proven to be an adequate bridge replacement technique. Recently a new bridge replacement alternative, called the Air-O-Form method, has emerged which has several potential advantages over box culvert construction. This new technique uses inflated balloons as the interior form in the construction of an arch culvert. Concrete was then shotcreted onto the balloon form. The objective of research project HR-313 was to construct an air formed arch culvert to determine the applicability of the Air-O-Form technique as a county bridge replacement alternative. The project had the following results: The Air-O-Form method can be used to construct a structurally sound arch culvert; and the method must become more economical if it is to compete with box culverts. Continued monitoring should be conducted in order to evaluate the long-term performance of the Air-O-Form method.
Resumo:
Iowa's secondary road network contains nearly 15,000 bridges which are less than 12 m (40 ft) long. Many of these bridges were built several decades ago and need to be replaced. Box culvert construction has proven to be an adequate bridge replacement technique. An alternative to box culverts is the Air-O-Form method of arch culvert construction. The Air-O-Form method has several potential advantages over box culvert construction. The new technique uses inflated balloons as the interior form in the construction of an arch culvert. Concrete is then shotcreted onto the balloon form to complete the arch culvert. The objective of the research project was to construct an air formed arch culvert to determine its applicability as an alternative county bridge replacement technique. The project had the following results: (1) The Air-O-Form method can be used to construct a structurally sound arch culvert; and (2) The method must become more economical if it is to compete with box culverts.
Resumo:
Highway Research Project HR-392 was undertaken to evaluate cold in-place asphalt recycled (CIR) projects in the State of Iowa. The research involved assessment of performance levels, investigation of factors that most influence pavement performance and economy, and development of guidelines for CIR project selection. The performance was evaluated in two ways: Pavement Condition Indices (PCI, U.S. Corps of Engineers) were calculated and overall ratings were given on ride and appearance. A regression analysis was extrapolated to predict the future service life of CIR roads. The results were that CIR roads within the State of Iowa, with less than 2000 annual average daily traffic (AADT), have an average predicted service life of fifteen to twenty-six years. Subgrade stability problems can prevent a CIR project from being successfully constructed. A series of Dynamic Cone Penetrometer (DCP) tests were conducted on a CIR project that experienced varying levels of subgrade failure during construction. Based on this case study, and supporting data, it was determined that the DCP test can be used to evaluate subgrades that have insufficient stability for recycling. Overall, CIR roads in Iowa are performing well. It appears that the development of transverse cracking has been retarded and little rutting has occurred. Contracting agencies must pay special attention to the subgrade conditions during project selection. Because of its performance, CIR is a recommended method to be considered for rehabilitating aged low volume (<2000 AADT) asphalt concrete roads in Iowa.
Resumo:
This study reassesses the development of compositional layering during the growth of granitic plutons, with emphasis on fractional crystallization and its interaction with both injection and inflation-related deformation. The Dolbel batholith (SW Niger) consists of 14, kilometre-sized plutons emplaced by pulsed magma inputs. Each pluton has a coarse-grained core and a peripheral layered series. Rocks consist of albite (An(<= 11)), K-feldspar (Or(96 99), Ab(1) (4)), quartz, edenite (X(Mg)=0337-0.55), augite (X(Mg)=0.65-0.72) and accessories (apatite, titanite and Fe-Ti-oxides). Whole-rock compositions are metaluminous, sodic (K(2)O/Na(2)O=0.49-0.62) and iron-rich [FeO(tot)/(FeO(tot)+MgO)=0.65-0.82]. The layering is present as size-graded and modally graded, sub-vertical, rhythmic units. Each unit is composed of three layers, which are, towards the interior: edenite +/- plagioclase (C(a/p)), edenite+plagioclase+augite+quartz (C(q)), and edenite+plagioclase+augite+quartz+K-feldspar (C(k)). All phases except quartz show zoned microstructures consisting of external intercumulus overgrowths, a central section showing oscillatory zoning and, in the case of amphibole and titanite, complexly zoned cores. Ba and Sr contents of feldspars decrease towards the rims. Plagioclase crystal size distributions are similar in all units, suggesting that each unit experienced a similar thermal history. Edenite, characteristic of the basal C(a/p) layer, is the earliest phase to crystallize. Microtextures and phase diagrams suggest that edenite cores may have been brought up with magma batches at the site of emplacement and mechanically segregated along the crystallized wall, whereas outer zones of the same crystals formed in situ. The subsequent C(q) layers correspond to cotectic compositions in the Qz-Ab-Or phase diagram at P(H2O)=5 kbar. Each rhythmic unit may therefore correspond to a magma batch and their repetition to crystallization of recurrent magma recharges. Microtextures and chemical variations in major phases allow four main crystallization stages to be distinguished: (1) open-system crystallization in a stirred magma during magma emplacement, involving dissolution and overgrowth (core of edenite and titanite crystals); (2) in situ fractional crystallization in boundary layers (C(a/p) and C(q) layers); (3) equilibrium `en masse' eutectic crystallization (C(k) layers); (4) compaction and crystallization of the interstitial liquid in a highly crystallized mush (e. g. feldspar intercumulus overgrowths). It is concluded that the formation of the layered series in the Dolbel plutons corresponds principally to in situ differentiation of successive magma batches. The variable thickness of the Ck layers and the microtextures show that crystallization of a rhythmic unit stops and it is compacted when a new magma batch is injected into the chamber. Therefore, assembly of pulsed magma injections and fractional crystallization are independent, but complementary, processes during pluton construction.