928 resultados para Colby student interaction with Waterville Jews
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
An overview is given of a user interaction monitoring and analysis framework called BaranC. Monitoring and analysing human-digital interaction is an essential part of developing a user model as the basis for investigating user experience. The primary human-digital interaction, such as on a laptop or smartphone, is best understood and modelled in the wider context of the user and their environment. The BaranC framework provides monitoring and analysis capabilities that not only records all user interaction with a digital device (e.g. smartphone), but also collects all available context data (such as from sensors in the digital device itself, a fitness band or a smart appliances). The data collected by BaranC is recorded as a User Digital Imprint (UDI) which is, in effect, the user model and provides the basis for data analysis. BaranC provides functionality that is useful for user experience studies, user interface design evaluation, and providing user assistance services. An important concern for personal data is privacy, and the framework gives the user full control over the monitoring, storing and sharing of their data.
Resumo:
A comprehensive user model, built by monitoring a user's current use of applications, can be an excellent starting point for building adaptive user-centred applications. The BaranC framework monitors all user interaction with a digital device (e.g. smartphone), and also collects all available context data (such as from sensors in the digital device itself, in a smart watch, or in smart appliances) in order to build a full model of user application behaviour. The model built from the collected data, called the UDI (User Digital Imprint), is further augmented by analysis services, for example, a service to produce activity profiles from smartphone sensor data. The enhanced UDI model can then be the basis for building an appropriate adaptive application that is user-centred as it is based on an individual user model. As BaranC supports continuous user monitoring, an application can be dynamically adaptive in real-time to the current context (e.g. time, location or activity). Furthermore, since BaranC is continuously augmenting the user model with more monitored data, over time the user model changes, and the adaptive application can adapt gradually over time to changing user behaviour patterns. BaranC has been implemented as a service-oriented framework where the collection of data for the UDI and all sharing of the UDI data are kept strictly under the user's control. In addition, being service-oriented allows (with the user's permission) its monitoring and analysis services to be easily used by 3rd parties in order to provide 3rd party adaptive assistant services. An example 3rd party service demonstrator, built on top of BaranC, proactively assists a user by dynamic predication, based on the current context, what apps and contacts the user is likely to need. BaranC introduces an innovative user-controlled unified service model of monitoring and use of personal digital activity data in order to provide adaptive user-centred applications. This aims to improve on the current situation where the diversity of adaptive applications results in a proliferation of applications monitoring and using personal data, resulting in a lack of clarity, a dispersal of data, and a diminution of user control.
Resumo:
Esta investigación analiza el impacto del Programa de Alimentación Escolar en el trabajo infantil en Colombia a través de varias técnicas de evaluación de impacto que incluyen emparejamiento simple, emparejamiento genético y emparejamiento con reducción de sesgo. En particular, se encuentra que este programa disminuye la probabilidad de que los escolares trabajen alrededor de un 4%. Además, se explora que el trabajo infantil se reduce gracias a que el programa aumenta la seguridad alimentaria, lo que consecuentemente cambia las decisiones de los hogares y anula la carga laboral en los infantes. Son numerosos los avances en primera infancia llevados a cabo por el Estado, sin embargo, estos resultados sirven de base para construir un marco conceptual en el que se deben rescatar y promover las políticas públicas alimentarias en toda la edad escolar.
Resumo:
Arbuscular mycorrhizal fungi (AMF), which is intrinsically present or may be introduced in soils by inoculation, is an example of natural and renewable resource to increase plant nutrient uptake. This kind of fungi produces structures (hyphae, arbuscles and sometimes vesicles) inside the plant root cortex. This mutualistic relationship promotes plant gains in terms of water and nutrient absorption (mainly phosphorus). Biochar can benefit plant interaction with AMF, however, it can contain potentially toxic compounds such as heavy metals and organic compounds (e.g. dioxins, furans and polycyclic aromatic hydrocarbons), depending on the feedstock and pyrolysis conditions, which may damage organisms. For these reasons, the present work will approach the impacts of biochar application on soil attributes, AMF-plant symbiosis and its responses in plant growth and phosphorus uptake. Eucalyptus biochar produced at high temperatures increases sorghum growth; symbiosis with AMF; and enhances spore germination. Enhanced plant growth in the presence of high temperature biochar and AMF is a response of root branching stimulated by an additive effect between biochar characteristics and root colonization. Biochar obtained at low temperature reduces AMF spore germination; however it does not affect plant growth and symbiosis in soil.
Resumo:
In sport climbing, athletes with vision impairments are constantly accompanied by their guides – usually trainers – both during the preparatory inspection of the routes and whilst climbing. Trainers are, so to speak, the climbers’ eyes, in the sense that they systematically put their vision in the service of the climbers’ mobility and sporting performance. The synergy between trainers and athletes is based on peculiar, strictly multimodal interactive practices that are focused on the body and on its constantly evolving sensory engagement with the materiality of routes. In this context, sensory perception and embodied actions required to plan and execute the climb are configured as genuinely interactive accomplishments. Drawing on the theoretical framework of Embodied and Situated Cognition and on the methodology of Conversation Analysis, this thesis engages in the multimodal analysis of trainer-athlete interactions in paraclimbing. The analysis is based on a corpus of video recorded climbing sessions. The major findings of the study can be summarized as follows. 1) Intercorporeality is key to interactions between trainers and athletes with visual impairments. The participants orient to perceiving the climbing space and acting in it as a ‘We’. 2) The grammar, lexicon, prosody, and timing of the trainers’ instructions are finely tuned to the ongoing corporeal experience of the climbers. 3) Climbers with visual impairments build their actions by using sensory resources that are provided by their trainers. This result is of particular importance as it shows that resources and constraints for action are in a fundamental way constituted in interaction with Others and with specific socio-material ecologies, rather than being defined a priori by the organs and functions of individuals’ body and mind. Individual capabilities are thus enhanced and extended in interaction, which encourages a more ecological view of (dis)ability.
Resumo:
Nowadays the development of new Internal Combustion Engines is mainly driven by the need to reduce tailpipe emissions of pollutants, Green-House Gases and avoid the fossil fuels wasting. The design of dimension and shape of the combustion chamber together with the implementation of different injection strategies e.g., injection timing, spray targeting, higher injection pressure, play a key role in the accomplishment of the aforementioned targets. As far as the match between the fuel injection and evaporation and the combustion chamber shape is concerned, the assessment of the interaction between the liquid fuel spray and the engine walls in gasoline direct injection engines is crucial. The use of numerical simulations is an acknowledged technique to support the study of new technological solutions such as the design of new gasoline blends and of tailored injection strategies to pursue the target mixture formation. The current simulation framework lacks a well-defined best practice for the liquid fuel spray interaction simulation, which is a complex multi-physics problem. This thesis deals with the development of robust methodologies to approach the numerical simulation of the liquid fuel spray interaction with walls and lubricants. The accomplishment of this task was divided into three tasks: i) setup and validation of spray-wall impingement three-dimensional CFD spray simulations; ii) development of a one-dimensional model describing the liquid fuel – lubricant oil interaction; iii) development of a machine learning based algorithm aimed to define which mixture of known pure components mimics the physical behaviour of the real gasoline for the simulation of the liquid fuel spray interaction.
Resumo:
The issues influencing student engagement with high-stakes computer-based exams were investigated, drawing on feedback from two cohorts of international MA Education students encountering this assessment method for the first time. Qualitative data from surveys and focus groups on the students’ examination experience were analysed, leading to the identification of engagement issues in the delivery of high-stakes computer-based assessments.The exam combined short-answer open-response questions with multiple-choice-style items to assess knowledge and understanding of research methods. The findings suggest that engagement with computer-based testing depends, to a lesser extent, on students’ general levels of digital literacy and, to a greater extent, on their information technology (IT) proficiency for assessment and their ability to adapt their test-taking strategies, including organisational and cognitive strategies, to the online assessment environment. The socialisation and preparation of students for computer-based testing therefore emerge as key responsibilities for instructors to address, with students requesting increased opportunities for practice and training to develop the IT skills and test-taking strategies necessary to succeed in computer-based examinations. These findings and their implications in terms of instructional responsibilities form the basis of a proposal for a framework for Learner Engagement with e-Assessment Practices.
Resumo:
Electrospinning is the most common and industrially scalable technique for the production of polymeric nanofibers. Currently, nanocomposites are drawing much interest for their excellent properties in terms of flexibility, electrical conductivity and high surface area, which enhances the interaction with the surrounding environment. The objective of this thesis was the optimization of different electrospinning setups for the production of nanostructured polymeric composites using graphene-related materials as nanofillers. Such composites were obtained using different polymers as matrix (polyamide 6, polyinylidene fluoride and polylactic acid) that were selected and combined with the appropriate reinforcements based on their properties and their interest for specific applications. Moreover, this study highlighted the possibility to tune the morphology and size of the produced nanofibers by the addition of appropriate nanofillers even in low amounts. The addition of only 0.5% of GO allowed the production of smooth nanofibers with diameters up to 75% thinner (in the case of PLA) than the ones obtained from the pristine polymer. PVdF was charged with GO to produce triboelectric materials that can be exploited in a wearable nanogenerator for the conversion of human motion energy in electrical energy. The addition of GO improved the open-circuit voltage and power-output of a generator prototype by 3.5 times. Electrospun PA6 membranes were coated with rGO using a simple two-step technique to produce conductive textiles for wearable electronic applications. The sheet resistance of the produced materials was measured in approximately 500 Ω/sq and their resistance to washing and bending was successfully tested. These materials could be exploited as strain sensors or heating elements in smart textiles. PLA was co-electrospun with GO and cellulose nanofibers to produce high-surface area and porosity mats that could be exploited for the production of functionalized highly selective adsorption membranes with low pressure drops.
Resumo:
This article is a commentary on the experiences that motivated my decision to become a human ecologist and ethnobiologist. These experiences include the pleasure of studying and of having the sense of being within nature, as well as the curiosity towards understanding the world and minds of local people. In particular, such understanding could be driven by addressing the challenging questions that originate in the interactions of such individuals with their natural surroundings. I have been particularly interested in the sea and the riverine forests that are inhabited by coastal or riverine small-scale fishers. Sharing the distinctive world of these fishers enjoyably incited my curiosity and challenged me to understand why fishers and their families 'do as they do' for their livelihoods including their beliefs. This challenge involved understanding the rationality (or the arguments or views) that underlies the decisions these individuals make in their interaction with nature. This curiosity was fundamental to my career choice, as were a number of reading interests. These reading interests included political economy and philosophy; evolution and sociobiology; evolutionary, human, and cultural ecology; cultural transmission; fisheries; local knowledge; ecological economics; and, naturally, ethnobiology.
Resumo:
Relationships among floral biology, floral micromorphology and pollinator behaviour in bird-pollinated orchids are important issues to understand the evolution of the huge flower diversity within Orchidaceae. We aimed to investigate floral mechanisms underlying the interaction with pollinators in two hummingbird-pollinated orchids occurring in the Atlantic forest. We assessed floral biology, nectar traits, nectary and column micromorphologies, breeding systems and pollinators. In both species, nectar is secreted by lip calli through spaces between the medial lamellar surfaces of epidermal cells. Such form of floral nectar secretion has not been previously described. Both species present functional protandry and are self-compatible yet pollinator-dependent. Fruit sets in hand-pollination experiments were more than twice those under natural conditions, evidencing pollen limitation. The absence of fruit set in interspecific crosses suggests the existence of post-pollination barriers between these synchronopatric species. In Elleanthus brasiliensis, fruits resulting from cross-pollination and natural conditions were heavier than those resulting from self-pollination, suggesting advantages to cross-pollination. Hummingbirds pollinated both species, which share at least one pollinator species. Species differences in floral morphologies led to distinct pollination mechanisms. In E. brasiliensis, attachment of pollinaria to the hummingbird bill occurs through a lever apparatus formed by an appendage in the column, another novelty to the knowledge of orchids. In E. crinipes, pollinaria attachment occurs by simple contact with the bill during insertion into the flower tube, which fits tightly around the bill. The novelties described here illustrate the overlooked richness in ecology and morphophysiology in Orchidaceae. This article is protected by copyright. All rights reserved.
Resumo:
Several medical and dental schools have described their experience in the transition from conventional to digital microscopy in the teaching of general pathology and histology disciplines; however, this transitional process has scarcely been reported in the teaching of oral pathology. Therefore, the objective of the current study is to report the transition from conventional glass slide to virtual microscopy in oral pathology teaching, a unique experience in Latin America. An Aperio ScanScope® scanner was used to digitalize histological slides used in practical lectures of oral pathology. The challenges and benefits observed by the group of Professors from the Piracicaba Dental School (Brazil) are described and a questionnaire to evaluate the students' compliance to this new methodology was applied. An improvement in the classes was described by the Professors who mainly dealt with questions related to pathological changes instead of technical problems; also, a higher interaction with the students was described. The simplicity of the software used and the high quality of the virtual slides, requiring a smaller time to identify microscopic structures, were considered important for a better teaching process. Virtual microscopy used to teach oral pathology represents a useful educational methodology, with an excellent compliance of the dental students.
Resumo:
This article provides some aspects that allow making a current reading of the situation of the Brazilian Chemistry that permit us considerate it as a strategic area. They are still presented some initial proposals related to the organization of the research as well as to win the challenges of the relationship with the other areas of the knowledge.
Resumo:
The increasing use of nanomaterials in several products in different areas such as electronics, cosmetics, food and drugs has attracted the attention of the scientific community due to unknown properties of these materials, such as the life cycle and the interaction with receptor organisms once they reach the environment. In this context, the present work shows an updated scenario of nanomaterials applications, characterization methods and toxicity evaluation, also addressing important aspects related to the development and application of nanotechnology under the environmental point of view.
Resumo:
This review considers some of the difficulties encountered with the analysis of basic solutes using reversed-phase chromatography, such as detrimental interaction with stationary phase silanol groups. Methods of overcoming these problems in reversed-phase separations, by judicious selection of the stationary phase and mobile phase conditions, are discussed. Developments to improve the chemical and thermal stability of stationary phases are also reviewed. It is shown that substantial progress has been made in the manufacturing of stationary phases, enabling their use over a wide variety of experimental conditions. In addition, general measures to significantly extend their lifespan are discussed.