999 resultados para Coastal plants
Resumo:
ABSTRACT The Paratudo (Tabebuia aurea) is a species occurring in the Pantanal of Miranda, Mato Grosso do Sul, Brazil, an area characterized by seasonal flooding. To evaluate the tolerance of this plant to flooding, plants aged four months were grown in flooded soil and in non-flooded soil (control group). Stomatal conductance, transpiration and CO2 assimilation were measured during the stress (48 days) and recovery (11 days) period, totalling 59 days. The values of stomatal conductance of the control group and stressed plants at the beginning of the flooded were 0.33 mol m-2s-1 and reached 0.02 mol m-2 s-1 (46th day) at the end of this event. For the transpiration parameter, the initial rate was 3.1 mol m s-1, and the final rate reached 0.2 or 0.3 mol m-2 s-1 (47/48 th day). The initial photosynthesis rate was 8.9 mmol m-2s-1 and oscillated after the sixth day, and the rate reached zero on the 48th day. When the photosynthesis rate reached zero, the potted plants were dried, and the rate was analyzed (11th day). The following values were obtained for dried plants: stomatal conductance = 0.26 mol m-2 s-1, transpiration rate = 2.5 mol m-2 s-1 and photosynthesis rate = 7.8 mmol m-2 s-1. Flooded soil reduced photosynthesis and stomatal conductance, leading to the hypertrophy of the lenticels. These parameters recovered and after this period, and plants exhibited tolerance to flooding stress by reducing their physiological activities.
Resumo:
This study aimed at identifying different conditions of coffee plants after harvesting period, using data mining and spectral behavior profiles from Hyperion/EO1 sensor. The Hyperion image, with spatial resolution of 30 m, was acquired in August 28th, 2008, at the end of the coffee harvest season in the studied area. For pre-processing imaging, atmospheric and signal/noise effect corrections were carried out using Flaash and MNF (Minimum Noise Fraction Transform) algorithms, respectively. Spectral behavior profiles (38) of different coffee varieties were generated from 150 Hyperion bands. The spectral behavior profiles were analyzed by Expectation-Maximization (EM) algorithm considering 2; 3; 4 and 5 clusters. T-test with 5% of significance was used to verify the similarity among the wavelength cluster means. The results demonstrated that it is possible to separate five different clusters, which were comprised by different coffee crop conditions making possible to improve future intervention actions.
Resumo:
This study aimed to describe the probabilistic structure of the annual series of extreme daily rainfall (Preabs), available from the weather station of Ubatuba, State of São Paulo, Brazil (1935-2009), by using the general distribution of extreme value (GEV). The autocorrelation function, the Mann-Kendall test, and the wavelet analysis were used in order to evaluate the presence of serial correlations, trends, and periodical components. Considering the results obtained using these three statistical methods, it was possible to assume the hypothesis that this temporal series is free from persistence, trends, and periodicals components. Based on quantitative and qualitative adhesion tests, it was found that the GEV may be used in order to quantify the probabilities of the Preabs data. The best results of GEV were obtained when the parameters of this function were estimated using the method of maximum likelihood. The method of L-moments has also shown satisfactory results.
Resumo:
Aiming at contributing to an adequate management of water resources, this study aimed to analyze and compare evapotranspiration (ETc) and crop coefficients (Kc) of melon plants measured by a lysimeter and estimated according to the FAO 56 methodology, in the city of Mossoró, state of Rio Grande do Norte (RN), Brazil. In order to measure ETc, weighing lysimeters with an area of 2.25m² were used, with two repetitions. The Penman-Monteith equation parameterized by FAO was used to estimate the reference evapotranspiration, and crop coefficients were those recommended in FAO-56 Bulletin adjusted to local climatic conditions. The required climatic data and lysimeter measurements were collected by an automatic weather station installed at the site. The results were compared by means of statistical indicators: of precision (r), of accuracy (d), and performance (c), in daily and weekly intervals. The data estimated by the FAO 56 methodology were adjusted optimally to the values measured by the lysimeters in accordance with index "c" in the two time scales assessed, indicating the potential of the method proposed by FAO to irrigation management in the climatic conditions of Agripole Assú-Mossoró.
Resumo:
This study aims to evaluate the leaf concentration of nitrogen and phosphorus correlated to the production of photoassimilates in beans plants (Phaseolus vulgaris L.) under high [CO2] and drought stress. The experiment was conducted in Viçosa (Brazil), during the period from April to July 2009, by using open-top chambers equipped with CO2 injection system. The drought stress was applied, through the irrigation suspension, during the period from flowering to maturation. The experimental design was randomized blocks in split-plot scheme with four replication, where the plots with plants grown in [CO2] of 700 mg L-1 and [CO2] environment of 380 mg L-1 and the subplots with plants with and without drought stress. The results were submitted to ANOVA and Tukey test (p < 0.05). In the plants under high [CO2] with and without drought stress, the photosynthetic rate increased by 59%, while the dry matter presented an increment of 20% in the plants under high [CO2] without drought stress. Reductions in [N] and [P] occurred in plants grown under high [CO2], resulting in greater efficiency in nitrogen use for photosynthesis. The high [CO2] increase only the total dry matter and not the total mass of grains. The drought stress reduces the dry matter and mass of grain, even at high [CO2].
Resumo:
Purpose The purpose of this study is to verify the use ofmedicinal plants by pregnant women treated at four Basic Health Units and at a public maternity facility in Brazil s northeast. Methods This is a cross-sectional, quantitative study, performed between February and April 2014. The subjects were 178 pregnant women, aged 18 to 42 years. To collect data, a structured questionnaire with dichotomous and multiple choice questions was used. To verify the correlation between the variables, Pearson s chi-square test was used. Results The study showed that 30.9% of the pregnant women used medicinal plants, and boldo was the most cited (35.4%). All the plants utilized, except lemongrass, have toxic effects in pregnancy, according to Resolution SES/RJ N° 1757. There was no statistically significant correlation between social class and use of medicinal plants. Conclusion The health of the study participants and their unborn children is at risk due to the inappropriate use of medicinal plants.
Resumo:
The biological variation in nature is called biodiversity. Anthropogenic pressures have led to a loss of biodiversity, alarming scientists as to what consequences declining diversity has for ecosystem functioning. The general consensus is that diversity (e.g. species richness or identity) affects functioning and provides services from which humans benefit. The aim of this thesis was to investigate how aquatic plant species richness and identity affect ecosystem functioning in terms of processes such as primary production, nutrient availability, epifaunal colonization and properties e.g. stability of Zostera marina subjected to shading. The main work was carried out in the field and ranged temporally from weeklong to 3.5 months-long experiments. The experimental plants used frequently co-occur in submerged meadows in the northern Baltic Sea and consist of eelgrass (Z. marina), perfoliate pondweed (Potamogeton perfoliatus), sago pondweed (P. pectinatus), slender-leaved pondweed (P. filiformis) and horned pondweed (Zannichellia palustris). The results showed that plant richness affected epifaunal community variables weakly, but had a strong positive effect on infaunal species number and functional diversity, while plant identity had strong effects on amphipods (Gammarus spp.), of which abundances were higher in plant assemblages consisting of P. perfoliatus. Depending on the starting standardizing unit, plant richness showed varying effects on primary production. In shoot density-standardized plots, plant richness increased the shoot densities of three out of four species and enhanced the plant biomass production. Both positive complementarity and selection effects were found to underpin the positive biodiversity effects. In shoot biomass-standardized plots, richness effects only affected biomass production of one species. Negative selection was prevalent, counteracting positive complementarity, which resulted in no significant biodiversity effect. The stability of Z. marina was affected by plant richness in such that Z. marina growing in polycultures lost proportionally less biomass than Z. marina in monocultures and thus had a higher resistance to shading. Monoculture plants in turn gained biomass faster, and thereby had a faster recovery than Z. marina growing in polycultures. These results indicate that positive interspecific interactions occurred during shading, while the faster recovery of monocultures suggests that the change from shading stress to recovery resulted in a shift from positive interactions to resource competition between species. The results derived from this thesis show that plant diversity affects ecosystem functioning and contribute to the growing knowledge of plant diversity being an important component of aquatic ecosystems. Diverse plant communities sustain higher primary productivity than comparable monocultures, affect faunal communities positively and enhance stability. Richness and identity effects vary, and identity has generally stronger effects on more variables than richness. However, species-rich communities are likely to contain several species with differing effects on functions, which renders species richness important for functioning. Mixed meadows add to coastal ecosystem functioning in the northern Baltic Sea and may provide with services essential for human well-being.
Resumo:
In recent years, the Brazilian Health Ministry and the World Health Organization have supported research into new technologies that may contribute to the surveillance, new treatments, and control of visceral leishmaniasis within the country. In light of this, the aim of this study was to isolate compounds from plants of the Caatinga biome, and to investigate their toxicity against promastigote and amastigote forms of Leishmania infantum chagasi, the main responsible parasite for South American visceral leishmaniasis, and evaluate their ability to inhibit acetylcholinesterase enzyme (AChE). A screen assay using luciferase-expressing promastigote form and an in situ ELISA assay were used to measure the viability of promastigote and amastigote forms, respectively, after exposure to these substances. The MTT colorimetric assay was performed to determine the toxicity of these compounds in murine monocytic RAW 264.7 cell line. All compounds were tested in vitro for their anti-cholinesterase properties. A coumarin, scoparone, was isolated from Platymiscium floribundum stems, and the flavonoids rutin and quercetin were isolated from Dimorphandra gardneriana beans. These compounds were purified using silica gel column chromatography, eluted with organic solvents in mixtures of increasing polarity, and identified by spectral analysis. In the leishmanicidal assays, the compounds showed dose-dependent efficacy against the extracellular promastigote forms, with an EC50 for scoporone of 21.4µg/mL, quercetin and rutin 26 and 30.3µg/mL, respectively. The flavonoids presented comparable results to the positive control drug, amphotericin B, against the amastigote forms with EC50 for quercetin and rutin of 10.6 and 43.3µg/mL, respectively. All compounds inhibited AChE with inhibition zones varying from 0.8 to 0.6, indicating a possible mechanism of action for leishmacicidal activity.
Resumo:
This study aimed to describe the occurrence of Leptospira interrogans serovars Icterohaemorrhagiae and Canicola, in coastal zone and in southern grasslands of Rio Grande do Sul, Brazil. In each one of the four analyzed farms blood samples were collected from free-living wild animals, domestic animals and humans to perform serological testing for leptospirosis. The presence of antibodies was verified by microscopic agglutination test (MAT). The criterion adopted to consider a serum as agglutination reactant was at least 50% of leptospira for a microscopic field of 100x. From 17 blood samples collected at Chuí, five (29.41%) were positive, three (60.00%) for serovar Icterohaemorrhagiae and two (40.00%) for Canicola. From 21 samples collected in the County of Santana da Boa Vista, six (28.57%) were positive, four (66.67%) for serovar Canicola and two (33.33%) for serovar Icterohaemorrhagiae. From 32 samples collected at Alegrete, 10 (31.25%) were positive, seven (70.00%) for serovar Icterohaemorrhagiae and three (30.00%) foro serovar Canicola. From 17 blood samples collected in Cruz Alta, three (17.64%) were positive, two (66.67%) for serovar Icterohaemorrhagiae and one (33.33%) for Canicola. It is necessary to improve sanitary practices on farms in the state of Rio Grande do Sul, in order to achieve success in leptospirosis control programs.
Resumo:
The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.
Resumo:
To investigate the effects of trifluralin, chlorimuron and clomazone on morphology and assimilate partitioning during soybean development, plants were grown in a greenhouse and sampled at 14-day intervals. Clomazone reduced stem and leaf dry matter accumulation at 14 days after emergence (DAE), while trifluralin and chlorimuron reduced plant part dry matter accumulation up to 28 DAE. The number of leaves, plant height, mass and number of pods and seeds, and the shoot/root ratio were not influenced by the herbicides. Roots, stems and leaves were the preferred sinks up to the R2 growth stage, while pods and developing seeds became the preferred sinks later. This order was not altered by the herbicides.
Resumo:
Coastal areas harbour high biodiversity, but are simultaneously affected by rapid degradations of species and habitats due to human interactions. Such alterations also affect the functioning of the ecosystem, which is primarily governed by the characteristics or traits expressed by the organisms present. Marine benthic fauna is nvolved in numerous functions such as organic matter transformation and transport, secondary production, oxygen transport as well as nutrient cycling. Approaches utilising the variety of faunal traits to assess benthic community functioning have rapidly increased and shown the need for further development of the concept. In this thesis, I applied biological trait analysis that allows for assessments of a multitude of categorical traits and thus evaluation of multiple functional aspects simultaneously. I determined the functional trait structure, diversity and variability of coastal zoobenthic communities in the Baltic Sea. The measures were related to recruitment processes, habitat heterogeneity, large-scale environmental and taxonomic gradients as well as anthropogenic impacts. The studies comprised spatial scales from metres to thousands of kilometres, and temporal scales spanning one season as well as a decade. The benthic functional structure was found to vary within and between seagrass landscape microhabitats and four different habitats within a coastal bay, in papers I and II respectively. Expressions of trait categories varied within habitats, while the density of individuals was found to drive the functional differences between habitats. The findings in paper III unveiled high trait richness of Finnish coastal benthos (25 traits and 102 cateogries) although this differed between areas high and low in salinity and human pressure. In paper IV, the natural reduction in taxonomic richness across the Baltic Sea led to an overall reduction in function. However, functional richness in terms of number of trait categories remained comparatively high at low taxon richness. Changes in number of taxa within trait categories were also subtle and some individual categories were maintained or even increased. The temporal analysis in papers I and III highlighted generalities in trait expressions and dominant trait categories in a seagrass landscape as well as a “type organism” for the northern Baltic Sea. Some initial findings were made in all four papers on the role of common and rare species and traits for benthic community functioning. The findings show that common and rare species may not always express the same trait categories in relation to each other. Rare species in general did not express unique functional properties. In order to advance the understanding of the approach, I also assessed some issues concerning the limitations of the concept. This was conducted by evaluating the link between trait category and taxonomic richness using especially univariate measures. My results also show the need to collaborate nationally and internationally on safeguarding the utility of taxonomic and trait data. The findings also highlight the importance of including functional trait information into current efforts in marine spatial planning and biomonitoring.
Resumo:
The effects of competition of seven weed species on the growth of coffee plants were evaluated under greenhouse conditions. Thirty days after coffee seedling transplantation into 12 L pots with soil level area of 6.5 dm², weeds were transplanted into or sown in those pots, at densities of 0, 1, 2, 3, 4 and 5 plants per pot. Competition or weedy periods from weed transplantation or emergence to plant harvesting, at weed pre-flowering stage, were: 77 days - Bidens pilosa, 98 days - Brachiaria decumbens, 180 days - Commelina diffusa, 82 days - Leonurus sibiricus, 68 days - Nicandra physaloides, 148 days - Richardia brasiliensis and 133 days - Sida rhombifolia. Coffee plant height, stem diameter, leaf number and shoot dry matter were determined. Effects of competition by N. physaloides and S. rhombifolia against coffee plants were among the lowest, since only a slight decrease in all the characteristics evaluated in coffee plants was observed. The other weed species caused severe decrease in growth, mainly with increasing weed plant densities. Competition degree was found to depend on weed species and density.
Resumo:
Phytoremediation, the use of plants to decontaminate soils and water resources from organic pollutants such as herbicides, is economically and environmentally a promising technique applied in many areas, including agriculture. The objective of this work was to evaluate the development of bean plants cultivated in the field, in soil with different levels of trifloxysulfuron-sodium contamination, following cultivation of two green manure species, as well as to evaluate the possibility of recontamination of the area by such herbicide with the straw permanence on the soil. The experiment was carried out in Coimbra, MG, Brazil, on a sandy clayey Red - Yellow Argisol from March to November 2003. Four levels of soil contamination with trifloxysulfuron-sodium (0.00; 3.75; 7.50; and 15.00 g ha-1) were used as well as the following five types of cultivation prior to bean sowing in the area after herbicide application: black velvet beans (Stizolobium aterrimum) followed by removal of straw; S. aterrimum, followed by permanence of straw; jack bean (Canavalia ensiformis), followed by removal of straw; C. ensiformis followed by permanence of straw; and without prior cultivation, weed-free (weeded control). The leguminous plants were kept in the area for 65 days, cut close to the soil, and with its aerial part left or not on the surface of the experimental plot, depending on the treatment. Fifteen days after the species were cut, bean was sown in the area. At 45 days after emergence (DAE) of the bean plants, plant height and dry mass of the aerial part were evaluated. Grain productivity was determined during harvest. Height, dry matter of the aerial part and grain productivity of the bean plants, cultivated in an area previously contaminated with trifloxysulfuron-sodium at any of the levels tested, were higher with prior cultivation of S. aterrimum or C. ensiformis. At the lowest level of herbicide contamination, prior cultivation of C. ensiformis was found to be more efficient than that of S. aterrimum in mitigating the harmful effects of trifloxysulfuron-sodium on bean grain production. The permanence of the straw of the green manure species during the bean cycle did not harm the development of the plants or caused culture productivity losses, indicating that straw permanence in the area does not promote recontamination of the area.
Resumo:
The objective of this work was to evaluate characteristics associated with the photosynthetic activity of cassava plants in competition with weeds or not. The trial was performed on open environment conditions, with experimental units consisting of fiber glass vases with 150 dm³ filled with Red Yellow Latosol, previously fertilized. Treatments consisted in the cultivation of cassava plants isolated and associated to three weed species (Bidens pilosa, Commelina benghalensis and Brachiaria plantaginea). After cassava shooting, 15 days after planting, a removal of the weeds excess was performed, sown at the time of cassava planting, leaving six plants m-2 of B. pilosa and four plants m-2 of C. benghalensis and B. plantaginea. At 60 days after emergence (DAE), stomatal conductance (Gs), vapor pressure in the substomatal cavity (Ean), temperature gradient between leaf and air (ΔT), transpiration rate (E) and water use efficiency (WUE) were evaluated. B. pilosa showed greater capacity to affect growth of cassava plants. B. plantaginea is very efficient in using water, especially by presenting C4 metabolism, and remains competitive with cassava even under temporarily low water status. C. benghalensis, in turn, is not a good competitor for light and apparently is not the primary cause of water depletion in the soil. The effects of weeds, in this case, were more associated with the competition. However, they were found between moderate to low. This implies that the competition established at experimental level was low.