991 resultados para Clinical pharmacology
Resumo:
The majority of severe epileptic encephalopathies of early childhood are symptomatic where a clear etiology is apparent. There is a small subgroup, however, where no etiology is found on imaging and metabolic studies, and genetic factors are important. Myoclonic-astatic epilepsy (MAE) and severe myoclonic epilepsy in infancy (SMEI), also known as Dravet syndrome, are epileptic encephalopathies where multiple seizure types begin in the first few years of life associated with developmental slowing. Clinical and molecular genetic studies of the families of probands with MAE and SMEI suggest a genetic basis. MAE was originally identified as part of the genetic epilepsy syndrome generalized epilepsy with febrile seizures plus (GEFS(+)). Recent clinical genetic studies suggest that SMEI forms the most severe end of the spectrum of the GEFS(+). GEF(+) has now been associated with molecular defects in three sodium channel subunit genes and a GABA subunit gene. Molecular defects of these genes have been identified in patients with MAE and SMEI. Interestingly, the molecular defects in MAE have been found in the setting of large GEFS(+) pedigrees, whereas, more severe truncation mutations arising de novo have been identified in patients with SMEI. It is likely that future molecular studies will shed light on the interaction of a number of genes, possibly related to the same or different ion channels, which result in a severe phenotype such as MAE and SMEI. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
There is concern over the safety of calcium channel blockers (CCBs) in acute coronary disease. We sought to determine if patients taking calcium channel blockers (CCBs) at the time of admission with acute myocardial infarction (AMI) had a higher case-fatality compared with those taking beta-blockers or neither medication. Clinical and drug treatment variables at the time of hospital admission predictive of survival at 28 days were examined in a community-based registry of patients aged under 65 years admitted to hospital for suspected AMI in Perth, Australia, between 1984 and 1993. Among 7766 patients, 1291 (16.6%) were taking a CCB and 1259 (16.2%) a betablocker alone at hospital admission. Patients taking CCBs had a worse clinical profile than those taking a beta-blocker alone or neither drug (control group), and a higher unadjusted 28-day mortality (17.6% versus 9.3% and 11.1% respectively, both P < 0.001). There was no significant heterogeneity with respect to mortality between nifedipine, diltiazem, or verapamil when used alone, or with a beta-blocker. After adjustment for factors predictive of death at 28 days, patients taking a CCB were found not to have an excess chance of death compared with the control group (odds ratio [OR] 1.06, 95% confidence interval [CI]; 0.87, 1.30), whereas those taking a beta-blocker alone had a lower odds of death (OR 0.75, 95% CI; 0.59, 0.94). These results indicate that established calcium channel blockade is not associated with an excess risk of death following AMI once other differences between patients are taken into account, but neither does it have the survival advantage seen with prior beta-blocker therapy.
Resumo:
c-Myb is a transcription factor employed in the haematopoietic system and gastrointestinal tract to regulate the exquisite balance between cell division, differentiation and survival. In its absence, these tissues either fail to form, or show aberrant biology. Mice lacking a functional c-myb gene die in utero by day 15 of development. When inappropriately expressed, as is common in leukaemia and epithelial cancers of the breast, colon and gastro-oesophagus, c-Myb appears to activate gene targets of key importance to cancer progression and metastasis. These genes include cyclooxygenase-2 (COX-2), Bcl-2, Bcl-X-L and c-Myc, which influence diverse processes such as angiogenesis, proliferation and apoptosis. The clinical potential for blocking c-Myb expression in malignancies is based upon strong preclinical data and some trial-based evidence. The modest clinical experience to date has been with haematopoietic malignancies, but other disease classes may be amenable to similar interventions. The frontline agents to achieve this are nuclease-resistant oligodeoxynucleotides (ODNs), which are proving to be acceptable therapeutic reagents in terms of tolerable toxicities and delivery. Nevertheless, further effort must be focused on improving their efficacy, eliminating non-specific toxicity and optimising delivery. Optimisation issues aside, it would appear that anti-c-Myb therapies will be used with most success when combined with other agents, some of which will be established cytotoxic and differentiation-inducing drugs. This review will explore the future strategic use of ODNs in vivo, focusing on a wide spectrum of diseases, including several beyond the haematopoietic malignancies, in which c-Myb appears to play a role.
Resumo:
Estimating energy requirements is necessary in clinical practice when indirect calorimetry is impractical. This paper systematically reviews current methods for estimating energy requirements. Conclusions include: there is discrepancy between the characteristics of populations upon which predictive equations are based and current populations; tools are not well understood, and patient care can be compromised by inappropriate application of the tools. Data comparing tools and methods are presented and issues for practitioners are discussed. (C) 2003 International Life Sciences Institute.