939 resultados para Climatic Variability of the Mediterranean Paleo-circulation
Resumo:
In this study, observations and numerical simulations are used to investigate how different El Nino events affect the development of SST anomalies in the Atlantic and how this relates to the Brazilian northeast (NE) precipitation. The results show that different types of El Nino have different impacts on the SST anomalies of the equatorial and tropical South Atlantic but a similar SST response in the tropical North Atlantic. Strong and long (weak and short) El Ninos with the main heating source located in the eastern (central) Pacific generate cold (warm) anomalies in the cold tongue and Benguela upwelling regions during boreal winter and spring. When the SST anomalies in the eastern equatorial and tropical South Atlantic are cold (warm), the meridional SST gradient across the equator is positive (negative) and the ITCZ is not allowed (allowed) to move southward during the boreal spring; as a consequence, the precipitation is below (above) the average over the NE. Thus, strong and long (weak and short) El Ninos are followed by dry (wet) conditions in the NE. During strong and long El Ninos, changes in the Walker circulation over the Atlantic and in the Pacific-South Atlantic (PSA) wave train cause easterly wind anomalies in the western equatorial Atlantic, which in turn activate the Bjerknes mechanism, establishing the cold tongue in boreal spring and summer. These easterly anomalies are also responsible for the Benguela upwelling. During short and weak El Ninos, westerly wind anomalies are present in the western equatorial Atlantic accompanied by warm anomalies in the eastern equatorial and tropical South Atlantic; a positive phase of the South Atlantic dipole develops during boreal winter. The simulations highlight the importance of ocean dynamics in establishing the correct slope of the equatorial thermocline and SST anomalies, which in turn determine the correct rainfall response over the NE.
Resumo:
The landfall of Cyclone Catarina on the Brazilian coast in March 2004 became known as the first documented hurricane in the South Atlantic Ocean, promoting a new view oil how large-scale features can contribute to tropical transition. The aim of this paper is to put the large-scale circulation associated with Catarina`s transition in climate perspective. This is discussed in the light of a robust pattern of spatial correlations between thermodynamic and dynamic variables of importance for hurricane formation. A discussion on how transition mechanisms respond to the present-day circulation is presented. These associations help in understanding why Catarina was formed in a region previously thought to be hurricane-free. Catarina developed over a large-scale area of thermodynamically favourable air/sea temperature contrast. This aspect explains the paradox that such a rare system developed when the sea surface temperature was slightly below average. But, although thermodynamics played an important role, it is apparent that Catarina would not have formed without the key dynamic interplay triggered by a high latitude blocking. The blocking was associated with an extreme positive phase of the Southern Annular Mode (SAM) both hemispherically and locally, and the nearby area where Catarina developed is found to be more cyclonic during the positive phase of the SAM. A conceptual model is developed and a `South Atlantic index` is introduced as a useful diagnostic of potential conditions leading to tropical transition in the area, where large-scale indices indicate trends towards more favourable atmospheric conditions for tropical cyclone formation. Copyright (c) 2008 Royal Meteorological Society
Resumo:
Intraseasonal and interannual variability of extreme wet and dry anomalies over southeastern Brazil and the western subtropical South Atlantic Ocean are investigated. Precipitation data are obtained from the Global Precipitation Climatology Project (GPCP) in pentads during 23 austral summers (December-February 1979/80-2001/02). Extreme wet (dry) events are defined according to 75th (25th) percentiles of precipitation anomaly distributions observed in two time scales: intraseasonal and interannual. The agreement between the 25th and 75th percentiles of the GPCP precipitation and gridded precipitation obtained from stations in Brazil is also examined. Variations of extreme wet and dry anomalies on interannual time scales are investigated along with variations of sea surface temperature (SST) and circulation anomalies. The South Atlantic SST dipole seems related to interannual variations of extreme precipitation events over southeastern Brazil. It is shown that extreme wet and dry events in the continental portion of the South Atlantic convergence zone (SACZ) are decoupled from extremes over the oceanic portion of the SACZ and there is no coherent dipole of extreme precipitation regimes between tropics and subtropics on interannual time scales. On intraseasonal time scales, the occurrence of extreme dry and wet events depends on the propagation phase of extratropical wave trains and consequent intensification (weakening) of 200-hPa zonal winds. Extreme wet and dry events over southeastern Brazil and subtropical Atlantic are in phase on intraseasonal time scales. Extreme wet events over southeastern Brazil and subtropical Atlantic are observed in association with low-level northerly winds above the 75th percentile of the seasonal climatology over central-eastern South America. Extreme wet events on intraseasonal time scales over southeastern Brazil are more frequent during seasons not classified as extreme wet or dry on interannual time scales.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Climatic factors directly influence growth and productivity of plants inside greenhouses, where temperature can be considered one of the major parameter in this context. Thus, the aim of this research was to develop a low cost device for thermal sensing and data acquisition, and use it in data collection and analysis of spatial variability of temperature inside a greenhouse with tropical climate. The developed equipment for thermal measurements showed a high degree of accuracy and fast responses in measurements, proving its efficiency. The data analysis interpretations were made from the elaborations of variograms and of tridimensional maps generated by a geostatistical software. The processed data analysis presented that a greenhouse without thermal control has spatial variations of air temperature, both in the sampled horizontals layers as in the three analyzed vertical columns, presenting variations of up to 3.6 ºC in certain times.
Resumo:
Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to assess the spatial and temporal variability of sugarcane yield efficiency and yield gap in the state of Sao Paulo, Brazil, throughout 16 growing seasons, considering climate and soil as main effects, and socioeconomic factors as complementary. An empirical model was used to assess potential and attainable yields, using climate data series from 37 weather stations. Soil effects were analyzed using the concept of production environments associated with a soil aptitude map for sugarcane. Crop yield efficiency increased from 0.42 to 0.58 in the analyzed period (1990/1991 to 2005/2006 crop seasons), and yield gap consequently decreased from 58 to 42%. Climatic factors explained 43% of the variability of sugarcane yield efficiency, in the following order of importance: solar radiation, water deficit, maximum air temperature, precipitation, and minimum air temperature. Soil explained 15% of the variability, considering the average of all seasons. There was a change in the correlation pattern of climate and soil with yield efficiency after the 2001/2002 season, probably due to the crop expansion to the west of the state during the subsequent period. Socioeconomic, biotic and crop management factors together explain 42% of sugarcane yield efficiency in the state of Sao Paulo.
Resumo:
The objective of this work was to assess the spatial and temporal variability of sugarcane yield efficiency and yield gap in the state of São Paulo, Brazil, throughout 16 growing seasons, considering climate and soil as main effects, and socioeconomic factors as complementary. An empirical model was used to assess potential and attainable yields, using climate data series from 37 weather stations. Soil effects were analyzed using the concept of production environments associated with a soil aptitude map for sugarcane. Crop yield efficiency increased from 0.42 to 0.58 in the analyzed period (1990/1991 to 2005/2006 crop seasons), and yield gap consequently decreased from 58 to 42%. Climatic factors explained 43% of the variability of sugarcane yield efficiency, in the following order of importance: solar radiation, water deficit, maximum air temperature, precipitation, and minimum air temperature. Soil explained 15% of the variability, considering the average of all seasons. There was a change in the correlation pattern of climate and soil with yield efficiency after the 2001/2002 season, probably due to the crop expansion to the west of the state during the subsequent period. Socioeconomic, biotic and crop management factors together explain 42% of sugarcane yield efficiency in the state of São Paulo.
Resumo:
[EN] Background. Coxiella burnetii is a highly clonal microorganism which is difficult to culture, requiring BSL3 conditions for its propagation. This leads to a scarce availability of isolates worldwide. On the other hand, published methods of characterization have delineated up to 8 different genomic groups and 36 genotypes. However, all these methodologies, with the exception of one that exhibited limited discriminatory power (3 genotypes), rely on performing between 10 and 20 PCR amplifications or sequencing long fragments of DNA, which make their direct application to clinical samples impracticable and leads to a scarce accessibility of data on the circulation of C. burnetii genotypes. Results: To assess the variability of this organism in Spain, we have developed a novel method that consists of a multiplex (8 targets) PCR and hybridization with specific probes that reproduce the previous classification of this organism into 8 genomic groups, and up to 16 genotypes. It allows for a direct characterization from clinical and environmental samples in a single run, which will help in the study of the different genotypes circulating in wild and domestic cycles as well as from sporadic human cases and outbreaks. The method has been validated with reference isolates. A high variability of C. burnetii has been found in Spain among 90 samples tested, detecting 10 different genotypes, being those adaA negative associated with acute Q fever cases presenting as fever of intermediate duration with liver involvement and with chronic cases. Genotypes infecting humans are also found in sheep, goats, rats, wild boar and ticks, and the only genotype found in cattle has never been found among our clinical samples. Conclusions: This newly developed methodology has permitted to demonstrate that C. burnetii is highly variable in Spain. With the data presented here, cattle seem not to participate in the transmission of C. burnetii to humans in the samples studied, while sheep, goats, wild boar, rats and ticks share genotypes with the human population.
Resumo:
Global observations of the chemical composition of the atmosphere are essential for understanding and studying the present and future state of the earth's atmosphere. However, by analyzing field experiments the consideration of the atmospheric motion is indispensable, because transport enables different chemical species, with different local natural and anthropogenic sources, to interact chemically and so consequently influences the chemical composition of the atmosphere. The distance over which that transport occurs is highly dependent upon meteorological conditions (e.g., wind speed, precipitation) and the properties of chemical species itself (e.g., solubility, reactivity). This interaction between chemistry and dynamics makes the study of atmospheric chemistry both difficult and challenging, and also demonstrates the relevance of including the atmospheric motions in that context. In this doctoral thesis the large-scale transport of air over the eastern Mediterranean region during summer 2001, with a focus on August during the Mediterranean Intensive Oxidant Study (MINOS) measurement campaign, was investigated from a lagrangian perspective. Analysis of back trajectories demonstrated transport of polluted air masses from western and eastern Europe in the boundary layer, from the North Atlantic/North American area in the middle end upper troposphere and additionally from South Asia in the upper troposphere towards the eastern Mediterranean. Investigation of air mass transport near the tropopause indicated enhanced cross-tropopause transport relative to the surrounding area over the eastern Mediterranean region in summer. A large band of air mass transport across the dynamical tropopause develops in June, and is shifted toward higher latitudes in July and August. This shifting is associated with the development and the intensification of the Arabian and South Asian upper-level anticyclones and consequential with areas of maximum clear-air turbulence, hypothesizing quasi-permanent areas with turbulent mixing of tropospheric and stratospheric air during summer over the eastern Mediterranean as a result of large-scale synoptic circulation. In context with the latex knowledge about the transport of polluted air masses towards the Mediterranean and with increasing emissions, especially in developing countries like India, this likely gains in importance.
Resumo:
Several coralligenous reefs occur in the soft bottoms of the northern Adriatic continental shelf. Mediterranean coralligenous habitats are characterised by high species diversity and are intrinsically valuable for their biological diversity and for the ecological processes they support. The conservation and management of these habitats require quantifying spatial and temporal variability of their benthic assemblages. This PhD thesis aims to give a relevant contribution to the knowledge of the structure and dynamics of the epibenthic assemblages on the coralligenous subtidal reefs occurring in the northern Adriatic Sea. The epibenthic assemblages showed a spatial variation larger compared to temporal changes, with a temporal persistence of reef-forming organisms. Assemblages spatial heterogeneity has been related to morphological features and geographical location of the reefs, together with variation in the hydrological conditions. Manipulative experiments help to understand the ecological processes structuring the benthic assemblages and maintaining their diversity. In this regards a short and long term experiment on colonization patterns of artificial substrata over a 3-year period has been performed in three reefs, corresponding to the three main types of assemblages detected in the previous study. The first colonisers, largely depending by the different larval supply, played a key role in determining the heterogeneity of the assemblages in the early stage of colonisation. Lateral invasion, from the surrounding assemblages, was the driver in structuring the mature assemblages. These complex colonisation dynamics explained the high heterogeneity of the assemblages dwelling on the northern Adriatic biogenic reefs. The buildup of these coralligenous reefs mainly depends by the bioconstruction-erosion processes that has been analysed through a field experiment. Bioconstruction, largely due to serpulid polychaetes, prevailed on erosion processes and occurred at similar rates in all sites. Similarly, the total energy contents in the benthic communities do not differ among sites, despite being provided by different species. Therefore, we can hypothesise that both bioconstruction processes and energetic storage may be limited by the availability of resources. Finally the major contribution of the zoobenthos compared to the phytobenthos to the total energetic content of assemblages suggests that the energy flow in these benthic habitats is primarily supported by planktonic food web trough the filter feeding invertebrates.
Resumo:
The modern stratigraphy of clastic continental margins is the result of the interaction between several geological processes acting on different time scales, among which sea level oscillations, sediment supply fluctuations and local tectonics are the main mechanisms. During the past three years my PhD was focused on understanding the impact of each of these process in the deposition of the central and northern Adriatic sedimentary successions, with the aim of reconstructing and quantifying the Late Quaternary eustatic fluctuations. In the last few decades, several Authors tried to quantify past eustatic fluctuations through the analysis of direct sea level indicators, among which drowned barrier-island deposits or coral reefs, or indirect methods, such as Oxygen isotope ratios (δ18O) or modeling simulations. Sea level curves, obtained from direct sea level indicators, record a composite signal, formed by the contribution of the global eustatic change and regional factors, as tectonic processes or glacial-isostatic rebound effects: the eustatic signal has to be obtained by removing the contribution of these other mechanisms. To obtain the most realistic sea level reconstructions it is important to quantify the tectonic regime of the central Adriatic margin. This result has been achieved integrating a numerical approach with the analysis of high-resolution seismic profiles. In detail, the subsidence trend obtained from the geohistory analysis and the backstripping of the borehole PRAD1.2 (the borehole PRAD1.2 is a 71 m continuous borehole drilled in -185 m of water depth, south of the Mid Adriatic Deep - MAD - during the European Project PROMESS 1, Profile Across Mediterranean Sedimentary Systems, Part 1), has been confirmed by the analysis of lowstand paleoshorelines and by benthic foraminifera associations investigated through the borehole. This work showed an evolution from inner-shelf environment, during Marine Isotopic Stage (MIS) 10, to upper-slope conditions, during MIS 2. Once the tectonic regime of the central Adriatic margin has been constrained, it is possible to investigate the impact of sea level and sediment supply fluctuations on the deposition of the Late Pleistocene-Holocene transgressive deposits. The Adriatic transgressive record (TST - Transgressive Systems Tract) is formed by three correlative sedimentary bodies, deposited in less then 14 kyr since the Last Glacial Maximum (LGM); in particular: along the central Adriatic shelf and in the adjacent slope basin the TST is formed by marine units, while along the northern Adriatic shelf the TST is represented by costal deposits in a backstepping configuration. The central Adriatic margin, characterized by a thick transgressive sedimentary succession, is the ideal site to investigate the impact of late Pleistocene climatic and eustatic fluctuations, among which Meltwater Pulses 1A and 1B and the Younger Dryas cold event. The central Adriatic TST is formed by a tripartite deposit bounded by two regional unconformities. In particular, the middle TST unit includes two prograding wedges, deposited in the interval between the two Meltwater Pulse events, as highlighted by several 14C age estimates, and likely recorded the Younger Dryas cold interval. Modeling simulations, obtained with the two coupled models HydroTrend 3.0 and 2D-Sedflux 1.0C (developed by the Community Surface Dynamics Modeling System - CSDMS), integrated by the analysis of high resolution seismic profiles and core samples, indicate that: 1 - the prograding middle TST unit, deposited during the Younger Dryas, was formed as a consequence of an increase in sediment flux, likely connected to a decline in vegetation cover in the catchment area due to the establishment of sub glacial arid conditions; 2 - the two-stage prograding geometry was the consequence of a sea level still-stand (or possibly a fall) during the Younger Dryas event. The northern Adriatic margin, characterized by a broad and gentle shelf (350 km wide with a low angle plunge of 0.02° to the SE), is the ideal site to quantify the timing of each steps of the post LGM sea level rise. The modern shelf is characterized by sandy deposits of barrier-island systems in a backstepping configuration, showing younger ages at progressively shallower depths, which recorded the step-wise nature of the last sea level rise. The age-depth model, obtained by dated samples of basal peat layers, is in good agreement with previous published sea level curves, and highlights the post-glacial eustatic trend. The interval corresponding to the Younger Dyas cold reversal, instead, is more complex: two coeval coastal deposits characterize the northern Adriatic shelf at very different water depths. Several explanations and different models can be attempted to explain this conundrum, but the problem remains still unsolved.
Resumo:
Particulate matter is one of the main atmospheric pollutants, with a great chemical-environmental relevance. Improving knowledge of the sources of particulate matter and of their apportionment is needed to handle and fulfill the legislation regarding this pollutant, to support further development of air policy as well as air pollution management. Various instruments have been used to understand the sources of particulate matter and atmospheric radiotracers at the site of Mt. Cimone (44.18° N, 10.7° E, 2165 m asl), hosting a global WMO-GAW station. Thanks to its characteristics, this location is suitable investigate the regional and long-range transport of polluted air masses on the background Southern-Europe free-troposphere. In particular, PM10 data sampled at the station in the period 1998-2011 were analyzed in the framework of the main meteorological and territorial features. A receptor model based on back trajectories was applied to study the source regions of particulate matter. Simultaneous measurements of atmospheric radionuclides Pb-210 and Be-7 acquired together with PM10 have also been analysed to acquire a better understanding of vertical and horizontal transports able to affect atmospheric composition. Seasonal variations of atmospheric radiotracers have been studied both analysing the long-term time series acquired at the measurement site as well as by means of a state-of-the-art global 3-D chemistry and transport model. Advection patterns characterizing the circulation at the site have been identified by means of clusters of back-trajectories. Finally, the results of a source apportionment study of particulate matter carried on in a midsize town of the Po Valley (actually recognised as one of the most polluted European regions) are reported. An approach exploiting different techniques, and in particular different kinds of models, successfully achieved a characterization of the processes/sources of particulate matter at the two sites, and of atmospheric radiotracers at the site of Mt. Cimone.
Resumo:
An appropriate management of fisheries resources can only be achieved with the continuous supply of information on the structure and biology of populations, in order to predict the temporal fluctuations. This study supports the importance of investigating the bio-ecology of increasingly exploited and poorly known species, such as gurnards (Osteichthyes, Triglidae) from Adriatic Sea (Mediterranean), to quantify their ecological role into marine community. It also focuses on investigate inter and intra-specific structuring factor of Adriatic population. These objectives were achieved by: 1) investigating aspects of the population dynamics; 2) studying the feeding biology through the examination of stomach contents; 3) using sagittal otoliths as potential marker of species life cycle; 4) getting preliminary data on mDNA phylogeny. Gurnards showed a specie-specific “critical size” coinciding with the start of sexual maturity, the tendency to migrate to greater depths, a change of diet from crustaceans to fish and an increase of variety of food items eaten. Distribution of prey items, predator size range and depth distribution were the main dimensions that influence the breadth of trophic niche and the relative difference amongst Adriatic gurnards. Several feeding preferences were individuated and a possible impact among bigger-size gurnards and other commercial fishes (anchovy, gadoids) and Crustacea (such as mantis prawn and shrimps) were to be necessary considered. Otolith studies showed that gurnard species have a very fast growth despite other results in other areas; intra-specific differences and the increase in the variability of otolith shape, sulcus acusticus shape, S:O ratios, sulcus acusticus external crystals arrangement were shown between juveniles and adults and were linked to growth (individual genetic factors) and to environmental conditions (e.g. depth and trophic niche distribution). In order to facilitate correct biological interpretation of data, molecular data were obtained for comparing morphological distance to genetic ones.
Resumo:
In order to obtain a better understanding about the influence of post-depositional diagenesis on speleothem 230Th/U-ages and paleoclimate variability during Marine Isotope Stage (MIS) 5 in northern Germany, four stalagmites from the Riesenberghöhle (RBH) were investigated by thin section analysis, 230Th/U-dating as well as stable oxygen and carbon isotope and laser ablation inductively coupled mass spectrometry (LA-ICPMS) trace element analysis. The RBH is located in the Weser Hills and is one of the northernmost limestone caves in Germany.rnMulti collector (MC) ICPMS 230Th/U-ages and thin section analysis of the RBH stalagmites shows that some growth phases of the stalagmites were diagenetically altered after their deposition. The impact of post-depositional diagenesis (PDD) on the 230Th/U-ages is modeled, and potential processes leading to PDD are discussed. In this context, it is suggested that PDD may be induced by rapid climate change at the inception of the GIS.rnDespite of the dating uncertainties resulting from PDD, 230Th/U-dating shows that the RBH stalagmites grew during the Eemian and most of the Greenland Interstadials (GIS) during MIS 5. Thus, the growth phases of the RBH stalagmites might be related to a reorganization of the Atlantic Meridional Overturning Circulation (AMOC). The stable isotope (δ13C and δ18O) and the trace element variability of the stalagmites reflects rapid changes of past temperature and precipitation on millennial and sub-millennial timescales. These past climate changes can be amplified by orbitally forced variations of the July solar insolation at 65°N.