848 resultados para Climate impacts
Resumo:
Climate change and sea level rise continue to devastate communities around the globe. The impacts have a disproportionate effect on those of lower socio-economic levels, and the consequences are frequently not borne equally amongst impacted individuals (UNDP, 2013). Community-based adaptation has been widely used to assess vulnerabilities and impacts at the community level, with an inclusive process that addresses root causes of risk. The process provides the opportunity for local government to empower and engaged impacted communities in identifying and prioritising their urgent adaptation needs. This study aims to understand East Palo Alto community vulnerabilities by assessing local knowledge and perception of risk to climate change. East Palo Alto, an urban city in California with socio- economic challenges, is vulnerable to flooding and coastal inundation. The limited financial and institutional capacity of the local government and community increases vulnerability and risk. Recommendations and steps are presented to guide actions and programs that are crucial in addressing community priorities and concerns
Resumo:
Protected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil's Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas' forest impacts vary significantly with development pressure. We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs' forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs.
Resumo:
Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.
Resumo:
Climate change is expected to have wide-ranging impacts on urban areas and creates additional challenges for sustainable development. Urban areas are inextricably linked with climate change, as they are major contributors to it, while also being particularly vulnerable to its impacts. Climate change presents a new challenge to urban areas, not only because of the expected rises in temperature and sea-level, but also the current context of failure to fully address the institutional barriers preventing action to prepare for climate change, or feedbacks between urban systems and agents. Despite the importance of climate change, there are few cities in developing countries that are attempting to address these issues systematically as part of their governance and planning processes. While there is a growing literature on the risks and vulnerabilities related to climate change, as yet there is limited research on the development of institutional responses, the dissemination of relevant knowledge and evaluation of tools for practical planning responses by decision makers at the city level. This thesis questions the dominant assumptions about the capacity of institutions and potential of adaptive planning. It argues that achieving a balance between climate change impacts and local government decision-making capacity is a vital for successful adaptation to the impacts of climate change. Urban spatial planning and wider environmental planning not only play a major role in reducing/mitigating risks but also have a key role in adapting to uncertainty in over future risk. The research focuses on a single province - the biggest city in Vietnam - Ho Chi Minh City - as the principal case study to explore this argument, by examining the linkages between urban planning systems, the structures of governance, and climate change adaptation planning. In conclusion it proposes a specific framework to offer insights into some of the more practical considerations, and the approach emphasises the importance of vertical and horizontal coordination in governance and urban planning.
Resumo:
Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.
Resumo:
Despite evidence from a number of Earth systems that abrupt temporal changes known as regime shifts are important, their nature, scale and mechanisms remain poorly documented and understood. Applying principal component analysis, change-point analysis and a sequential t-test analysis of regime shifts to 72 time series, we confirm that the 1980s regime shift represented a major change in the Earth's biophysical systems from the upper atmosphere to the depths of the ocean and from the Arctic to the Antarctic, and occurred at slightly different times around the world. Using historical climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and statistical modelling of historical temperatures, we then demonstrate that this event was triggered by rapid global warming from anthropogenic plus natural forcing, the latter associated with the recovery from the El Chichón volcanic eruption. The shift in temperature that occurred at this time is hypothesized as the main forcing for a cascade of abrupt environmental changes. Within the context of the last century or more, the 1980s event was unique in terms of its global scope and scale; our observed consequences imply that if unavoidable natural events such as major volcanic eruptions interact with anthropogenic warming unforeseen multiplier effects may occur.
Resumo:
During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.
Resumo:
During the 1980s, the North Sea plankton community underwent a well-documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic-level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic-level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty-three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para-pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate-change impacts on synchrony. We discuss why climate-change impacts on synchrony may well be more common and consequential than previously recognized.
Resumo:
The destruction caused by tropical cyclone (TC) Pam in March 2015 is considered one of the worst natural disasters in the history of Vanuatu. It has highlighted the need for a better understanding of TC impacts and adaptation in the Southwest Pacific (SWP) region. Therefore, the key aims of this study are to (i) understand local perceptions of TC activity, (ii) investigate impacts of TC activity and (iii) uncover adaptation strategies used to offset the impacts of TCs. To address these aims, a survey (with 130 participants from urban areas) was conducted across three SWP small island states (SISs): Fiji, Vanuatu and Tonga (FVT). It was found that respondents generally had a high level of risk perception and awareness of TCs and the associated physical impacts, but lacked an understanding of the underlying weather conditions. Responses highlighted that current methods of adaptation generally occur at the local level, immediately prior to a TC event (preparation of property, gathering of food, finding a safe place to shelter). However higher level adaptation measures (such as the modification to building structures) may reduce vulnerability further. Finally, we discuss the potential
of utilising weather-related traditional knowledge and nontraditional knowledge of empirical and climate-model-based weather forecasts to improve TC outlooks, which would ultimately reduce vulnerability and increase adaptive capacity. Importantly, lessons learned from this study may result in the modification and/or development of existing adaptation strategies.
Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate
Resumo:
Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.
Resumo:
The impacts of climate change are considered to be strong in countries located in tropical Africa that depend on agriculture for their food, income and livelihood. Therefore, a better understanding of the local dimensions of adaptation strategies is essential to develop appropriate measures that will mitigate adverse consequences. Hence, this study was conducted to identify the most commonly used adaptation strategies that farm households practice among a set of options to withstand the effects of climate change and to identify factors that affect the choice of climate change adaptation strategies in the Central Rift Valley of Ethiopia. To address this objective, Multivariate Probit model was used. The results of the model indicated that the likelihood of households to adapt improved varieties of crops, adjust planting date, crop diversification and soil conservation practices were 58.73%, 57.72%, 35.61% and 41.15%, respectively. The Simulated Maximum Likelihood estimation of the Multivariate Probit model results suggested that there was positive and significant interdependence between household decisions to adapt crop diversification and using improved varieties of crops; and between adjusting planting date and using improved varieties of crops. The results also showed that there was a negative and significant relationship between household decisions to adapt crop diversification and soil conservation practices. The paper also recommended household, socioeconomic, institutional and plot characteristics that facilitate and impede the probability of choosing those adaptation strategies.
Resumo:
La croissance du phytoplancton est limitée par les faibles concentrations de fer (Fe) dans près de 40% de l’océan mondial. Le Pacifique subarctique Nord-Est représente une de ces zones limitées en fer et désignées High Nutrient - Low Chlorophyll (HNLC). Cet écosystème, dominé par des cellules de petite taille telles les prymnésiophytes, est caractérisé par de très faibles concentrations estivales de chlorophylle a et de fortes concentrations de macronutriments. Il a été maintes fois démontré que les ajouts de fer, sous différentes formes chimiques (habituellement FeSO4), dans les zones HNLC, stimulent la croissance et modifient la structure des communautés planctoniques en favorisant la croissance des cellules de grande taille, notamment les diatomées. Ces effets sur la communauté planctonique ont le potentiel d’influencer les grands mécanismes régulateurs du climat, tels la pompe biologique de carbone et la production de diméthylsulfure (DMS). Les poussières provenant des déserts du nord de la Chine sont reconnues depuis longtemps comme une source sporadique importante de fer pour le Pacifique Nord-Est. Malgré leur importance potentielle, l’influence directe exercée par ces poussières sur l’écosystème planctonique de cette zone HNLC n’a jamais été étudiée. Il s’agit d’une lacune importante puisque le fer associé aux poussières est peu soluble dans l’eau de mer, que la proportion biodisponible n’est pas connue et que les poussières peuvent avoir un effet inhibiteur chez le phytoplancton. Cette thèse propose donc, dans un premier temps, de mesurer pour la première fois l’effet de la fertilisation de la communauté planctonique du Pacifique Nord-Est par un gradient de concentrations de poussières désertiques naturelles. Cette première expérimentation a démontré que le fer contenu dans les poussières asiatiques est biodisponible et qu’une déposition équivalente à celles prenant place au printemps dans le Pacifique Nord-Est peut résulter en une stimulation significative de la prise de nutriments et de la croissance du phytoplancton. Mes travaux ont également montré que l’ajout de 0,5 mg L-1 de poussières peut résulter en la production d’autant de biomasse algale que l’ajout de FeSO4, l’espèce chimique utilisée lors des expériences d’enrichissement en fer à grande échelle. Cependant, les ajouts de FeSO4 favorisent davantage les cellules de petite taille que les ajouts de poussières, observation démontrant que le FeSO4 n’est pas un proxy parfait des poussières asiatiques. Dans un deuxième temps, je me suis intéressée à une source alternative de fer atmosphérique, les cendres volcaniques. Mon intérêt pour cette source de fer a été attisé par les observations d’une floraison spectaculaire dans le Pacifique Nord-Est, ma région d’étude, associée à l’éruption de 2008 du volcan Kasatochi dans les îles Aléoutiennes. Forte de mon expérience sur les poussières, j’ai quantifié l’effet direct de ces cendres volcaniques sur la communauté planctonique du Pacifique Nord-Est. Mes résultats ont montré que le fer contenu dans les cendres volcaniques est également biodisponible pour le phytoplancton. Ils ont également montré que cette source de fer peut être aussi importante que les poussières désertiques dans la régulation de la croissance du phytoplancton dans cette partie de l’océan global à l’échelle millénaire. Dans un troisième temps, j’ai estimé comment l’acidification des océans modulera les réponses des communautés planctoniques aux dépositions naturelles de fer mises en évidence lors de mes expériences précédentes. Pour ce faire, j’ai effectué des enrichissements de poussière dans de l’eau de mer au pH actuel de 8.0 et dans l’eau de mer acidifiée à un pH de 7.8. Mes résultats ont montré une diminution du taux de croissance du phytoplancton dans le milieu acidifié mais pas de changement notable dans la structure de la communauté. Les ajouts de poussières et de cendres, de même que les variations de pH, n’ont pas eu d’effet significatif sur la production de DMS et de son précurseur le diméthylsulfoniopropionate (DMSP), probablement en raison de la courte durée (4 jours) des expériences. L’ensemble des résultats de cette thèse montre que le fer contenu dans diverses sources atmosphériques naturelles est biodisponible pour le phytoplancton du Pacifique Nord-Est et que des taux de déposition réalistes peuvent stimuler la croissance de manière notable dans les premiers jours suivant une tempête désertique ou une éruption volcanique. Finalement, les résultats de mes expériences à stresseurs multiples Fer/acidification suggèrent une certaine résistance des communautés phytoplanctoniques à la diminution du pH prédite d’ici la fin du siècle pour les eaux de surface des océans.
Resumo:
Climate change will exacerbate challenges facing food security in the UK. Increasing frequency and intensity of extreme weather events will further impact upon farm systems. At the heart of the impending challenges to UK agricultural production, farmers’ resilience will be tested to new limits. Research into farmers’ resilience to climate change in the UK is distinctly underdeveloped when compared to research in developing and other developed nations. This research gap is addressed through exploration of farmers’ resilience in the Welsh Marches, establishing the role of risk perceptions, local knowledge and adaptive capacity in farmers’ decision-making to limit climate shocks. Further contributions to agricultural geography are made through experimentation of a ‘cultural-behavioural approach’, seeking to revisit the behavioural approach in view of the cultural-turn. The Welsh Marches, situated on the English-Welsh border, has been selected as a focal point due to its agricultural diversity, and known experiences of extreme weather events. A phased mixed methodological approach is adopted. Phase one explores recorded and reported experiences of past extreme weather events in local meteorological records and local newspaper articles. Phase two consists of 115 survey-questionnaires, 15 in-depth semi-structured interviews, and a scenario based focus group with selected farmers from the Welsh Marches. This allows farmers’ resilience to climate change in the past, present and future to be explored. Original contributions to knowledge are made through demonstrating the value of focusing upon the culture of a specific farm community, applying a ‘bottom-up’ approach. The priority given to the weather in farmers’ decision-making is identified to be determined by individual relationships that farmers’ develop with the weather. Yet, a consensus of farmers’ observations has established recognition of considerable changes in the weather over the last 30 years, acknowledging more extremes and seasonal variations. In contrast, perceptions of future climate change are largely varied. Farmers are found to be disengaged with the communication of climate change science, as the global impacts portrayed are distant in time and place from probable impacts that may be experienced locally. Current communication of climate change information has been identified to alienate farmers from the local reality of probable future impacts. Adaptation options and responses to extreme weather and climate change are identified from measures found to be already implemented and considered for the future. A greater need to explore local knowledge and risk perception in relation to farmers’ understanding of future climate challenges is clear. There is a need to conduct comparable research in different farm communities across the UK. Progression into establishing the role of farmers’ resilience in responding effectively to future climate challenges has only just begun.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Nature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation options for municipalities. We explore the various contexts in which nature-based solutions are relevant for climate mitigation and adaptation in urban areas, identify indicators for assessing the effectiveness of nature-based solutions and related knowledge gaps. In addition, we explore existing barriers and potential opportunities for increasing the scale and effectiveness of nature-based solution implementation. The results were derived from an inter- and transdisciplinary workshop with experts from research, municipalities, policy, and society. As an outcome of the workshop discussions and building on existing evidence, we highlight three main needs for future science and policy agendas when dealing with nature-based solutions: (i) produce stronger evidence on nature-based solutions for climate change adaptation and mitigation and raise awareness by increasing implementation; (ii) adapt for governance challenges in implementing nature-based solutions by using reflexive approaches, which implies bringing together new networks of society, nature-based solution ambassadors, and practitioners; (iii) consider socio-environmental justice and social cohesion when implementing nature-based solutions by using integrated governance approaches that take into account an integrative and transdisciplinary participation of diverse actors. Taking these needs into account, nature-based solutions can serve as climate mitigation and adaptation tools that produce additional cobenefits for societal well-being, thereby serving as strong investment options for sustainable urban planning.