949 resultados para Chromosomes, Human, Pair 13
Resumo:
BACKGROUND Histologic experimental studies have reported incomplete neointimal healing in overlapping with respect to nonoverlapping segments in drug-eluting stents (DESs), but these observations have not been confirmed in human coronary arteries hitherto. On the contrary, angiographic and optical coherence tomography studies suggest that DES overlap elicits rather an exaggerated than an incomplete neointimal reaction. METHODS Optical coherence tomography studies from 2 randomized trials including sirolimus-eluting, biolimus-eluting, everolimus-eluting, and zotarolimus-eluting stents were analyzed at 9- to 13-month follow-up. Coverage in overlapping segments was compared versus the corresponding nonoverlapping segments of the same stents, using statistical pooled analysis. RESULTS Forty-two overlaps were found in 31 patients: 11 in sirolimus-eluting stents, 3 in biolimus-eluting stents, 17 in everolimus-eluting stents, and 11 in zotarolimus-eluting stents. The risk ratio of incomplete coverage was 2.35 (95% CI 1.86-2.98) in overlapping versus nonoverlapping segments. Thickness of coverage in overlaps was only 85% (95% CI 81%-90%) of the thickness in nonoverlaps. Significant heterogeneity of the effect was observed, especially pronounced in the comparison of thickness of coverage (I(2) = 90.31). CONCLUSIONS The effect of overlapping DES on neointimal inhibition is markedly heterogeneous: on average, DES overlap is associated with more incomplete and thinner coverage, but in some cases, the overlap elicits an exaggerated neointimal reaction, thicker than in the corresponding nonoverlapping segments. These results might help to understand why overlapping DES is associated with worse clinical outcomes, both in terms of thrombotic phenomena and in terms of restenosis and revascularization.
Resumo:
Evaluation of: Noorman M, Hakim S, Kessler E et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 10(3), 412-419 (2013). Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a progressive replacement of the ventricular myocardium with adipose and fibrous tissue. This disease is often associated with mutations in genes encoding desmosomal proteins in the majority of patients. Based on results obtained from recent experimental models, a disturbed distribution of gap junction proteins and cardiac sodium channels may also be observed in AC phenotypes, secondary to desmosomal dysfunction. The study from Noorman et al. examined heart sections from patients diagnosed with AC and performed immunohistochemical analyses of N-cadherin, PKP2, PKG, Cx43 and the cardiac sodium channel NaV1.5. Altered expression/distribution of Cx43, PKG and NaV1.5 was found in most cases of patients with AC. The altered expression and/or distribution of NaV1.5 channels in AC hearts may play a mechanistic role in the arrhythmias leading to sudden cardiac death in AC patients. Thus, NaV1.5 should be considered as a supplemental element in the evaluation of risk stratification and management strategies. However, additional experiments are required to clearly understand the mechanisms leading to AC phenotypes.
Resumo:
Background: The pore-forming subunit of the cardiac sodium channel, Na v1.5, has been previously found to be mutated in genetically determined arrhythmias. Na v1.5 associates with many proteins that regulate its function and cellular localisation. In order to identify more in situ Na v1.5 interacting proteins, genetically-modified mice with a high-affinity epitope in the sequence of Na v1.5 can be generated. Methods: In this short study, we (1) compared the biophysical properties of the sodium current (I Na) generated by the mouse Na v1.5 (mNa v1.5) and human Na v1.5 (hNa v1.5) constructs that were expressed in HEK293 cells, and (2) investigated the possible alterations of the biophysical properties of the human Na v1.5 construct that was modified with specific epitopes. Results: The biophysical properties of mNa v1.5 were similar to the human homolog. Addition of epitopes either up-stream of the N-terminus of hNa v1.5 or in the extracellular loop between the S5 and S6 transmembrane segments of domain 1, significantly decreased the amount of I Na and slightly altered its biophysical properties. Adding green fluorescent protein (GFP) to the N-terminus did not modify any of the measured biophysical properties of hNa v1.5. Conclusions: These findings have to be taken into account when planning to generate genetically-modified mouse models that harbour specific epitopes in the gene encoding mNa v1.5.
Resumo:
Background: Speciation reversal: the erosion of species differentiation via an increase in introgressive hybridization due to the weakening of previously divergent selection regimes, is thought to be an important, yet poorly understood, driver of biodiversity loss. Our study system, the Alpine whitefish (Coregonus spp.) species complex is a classic example of a recent postglacial adaptive radiation: forming an array of endemic lake flocks, with the independent origination of similar ecotypes among flocks. However, many of the lakes of the Alpine radiation have been seriously impacted by anthropogenic nutrient enrichment, resulting in a collapse in neutral genetic and phenotypic differentiation within the most polluted lakes. Here we investigate the effects of eutrophication on the selective forces that have shaped this radiation, using population genomics. We studied eight sympatric species assemblages belonging to five independent parallel adaptive radiations, and one species pair in secondary contact. We used AFLP markers, and applied FST outlier (BAYESCAN, DFDIST) and logistic regression analyses (MATSAM), to identify candidate regions for disruptive selection in the genome and their associations with adaptive traits within each lake flock. The number of outlier and adaptive trait associated loci identified per lake were then regressed against two variables (historical phosphorus concentration and contemporary oxygen concentration) representing the strength of eutrophication. Results: Whilst we identify disruptive selection candidate regions in all lake flocks, we find similar trends, across analysis methods, towards fewer disruptive selection candidate regions and fewer adaptive trait/candidate loci associations in the more polluted lakes. Conclusions: Weakened disruptive selection and a concomitant breakdown in reproductive isolating mechanisms in more polluted lakes has lead to increased gene flow between coexisting Alpine whitefish species. We hypothesize that the resulting higher rates of interspecific recombination reduce either the number or extent of genomic islands of divergence surrounding loci evolving under disruptive natural selection. This produces the negative trend seen in the number of selection candidate loci recovered during genome scans of whitefish species flocks, with increasing levels of anthropogenic eutrophication: as the likelihood decreases that AFLP restriction sites will fall within regions of heightened genomic divergence and therefore be classified as FST outlier loci. This study explores for the first time the potential effects of human-mediated relaxation of disruptive selection on heterogeneous genomic divergence between coexisting species.
Resumo:
Purpose The better understanding of vertebral mechanical properties can help to improve the diagnosis of vertebral fractures. As the bone mechanical competence depends not only from bone mineral density (BMD) but also from bone quality, the goal of the present study was to investigate the anisotropic indentation moduli of the different sub-structures of the healthy human vertebral body and spondylophytes by means of microindentation. Methods Six human vertebral bodies and five osteophytes (spondylophytes) were collected and prepared for microindentation test. In particular, indentations were performed on bone structural units of the cortical shell (along axial, circumferential and radial directions), of the endplates (along the anterio-posterior and lateral directions), of the trabecular bone (along the axial and transverse directions) and of the spondylophytes (along the axial direction). A total of 3164 indentations down to a maximum depth of 2.5 µm were performed and the indentation modulus was computed for each measurement. Results The cortical shell showed an orthotropic behavior (indentation modulus, Ei, higher if measured along the axial direction, 14.6±2.8 GPa, compared to the circumferential one, 12.3±3.5 GPa, and radial one, 8.3±3.1 GPa). Moreover, the cortical endplates (similar Ei along the antero-posterior, 13.0±2.9 GPa, and along the lateral, 12.0±3.0 GPa, directions) and the trabecular bone (Ei= 13.7±3.4 GPa along the axial direction versus Ei=10.9±3.7 GPa along the transverse one) showed transversal isotropy behavior. Furthermore, the spondylophytes showed the lower mechanical properties measured along the axial direction (Ei=10.5±3.3 GPa). Conclusions The original results presented in this study improve our understanding of vertebral biomechanics and can be helpful to define the material properties of the vertebral substructures in computational models such as FE analysis.
Resumo:
Purpose Femoral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. Quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) models have been proved to be more accurate predictors of femoral strength than BMD by adding geometrical and material properties. The aim of this study was to evaluate the ability of hvFE models in predicting femoral stiffness, strength and failure location for a large number of pairs of human femora tested in two different loading scenarios. Methods Thirty-six pairs of femora were scanned with QCT and total proximal BMD and BMC were evaluated. For each pair, one femur was positioned in one-legged stance configuration (STANCE) and the other in a sideways configuration (SIDE). Nonlinear hvFE models were generated from QCT images by reproducing the same loading configurations imposed in the experiments. For experiments and models, the structural properties (stiffness and ultimate load), the failure location and the motion of the femoral head were computed and compared. Results In both configurations, hvFE models predicted both stiffness (R2=0.82 for STANCE and R2=0.74 for SIDE) and femoral ultimate load (R2=0.80 for STANCE and R2=0.85 for SIDE) better than BMD and BMC. Moreover, the models predicted qualitatively well the failure location (66% of cases) and the motion of the femoral head. Conclusions The subject specific QCT-based nonlinear hvFE model cannot only predict femoral apparent mechanical properties better than densitometric measures, but can additionally provide useful qualitative information about failure location.
Resumo:
Human basophils are major inflammatory cells in maintaining chronic allergic asthma. It has been published that interferon-α (IFN-α) improves clinical symptoms of asthma patients. In contrast, IL-3 exacerbates airway inflammation by inducing IL-4, IL-8 and IL-13 secretion from human basophils thus regulating their immunoregulatory functions. Furthermore, IL-3 exceptionally promotes survival of basophils. Here, we assessed cellular response of human basophils treated with IFN-α alone or in combination with IL-3. Our data show that IFN-α enhances apoptosis in purified human blood basophils compared to spontaneous apoptosis of controls or IFN-γ treated cells. Furthermore, we demonstrate that both IFN-α and FasL enhance apoptosis in human basophils with similar efficiency in a rather additive than synergistic way. IFN-α inhibits IL-3-induced survival to a minor degree. Particularly however, it suppresses IL-3-induced de-novo production of IL-8 and IL-13 up to 80%. In contrast, the production of IL-4 is not affected. Analyses of signaling pathways reveal that IFN-α promotes prolonged phosphorylation of STAT1/STAT2. By using a pan-JAK inhibitor the phosphorylation of STAT1/STAT2 is inhibited and most importantly the pro-apoptotic effect of IFN-α is abolished. Although the phosphorylation of p38-MAPK in IFN-α-treated cells is comparable to non-treated cells, inhibition of p-p38 activity abrogates IFN-α-enhanced apoptosis as well. We conclude that IFN-α-enhanced apoptosis is tightly regulated by the cooperation of JAK/STAT and p38-MAPK pathways. Our study identifies IFN-α as a novel inhibitor of IL-3-induced IL-8 and IL-13 production of human basophils. Taken together our study may explain the improved clinical symptoms of asthma patients treated with IFN-α.
Resumo:
We determined the complete genome sequences of both biotypes of a virus pair of bovine viral diarrhea virus (BVDV) subgenotype 1k. The viruses were isolated from a persistently infected calf suffering from mucosal disease. Compared to the noncytopathic biotype, the cytopathic biotype contains an insertion of 84 nucleotides and 22 nucleotide changes.
Resumo:
The greater Himalayan region demarcates two of the most prominent linguistic phyla in Asia: Tibeto-Burman and Indo-European. Previous genetic surveys, mainly using Y-chromosome polymorphisms and/or mitochondrial DNA polymorphisms suggested a substantially reduced geneflow between populations belonging to these two phyla. These studies, however, have mainly focussed on populations residing far to the north and/or south of this mountain range, and have not been able to study geneflow patterns within the greater Himalayan region itself. We now report a detailed, linguistically informed, genetic survey of Tibeto-Burman and Indo-European speakers from the Himalayan countries Nepal and Bhutan based on autosomal microsatellite markers and compare these populations with surrounding regions. The genetic differentiation between populations within the Himalayas seems to be much higher than between populations in the neighbouring countries. We also observe a remarkable genetic differentiation between the Tibeto-Burman speaking populations on the one hand and Indo-European speaking populations on the other, suggesting that language and geography have played an equally large role in defining the genetic composition of present-day populations within the Himalayas.
Resumo:
Neurotensin(8-13) (NTS(8-13)) analogs with C- and/or N-terminal β-amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1-6). A virtual docking experiment showed almost perfect fit of one of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives, 6a, into a crystallographically identified receptor NTSR1 (Fig.1). The affinities for the receptors of the NTS analogs and derivatives are low, when determined with cell-membrane homogenates, while, with NTSR1-exhibiting cancer tissues, affinities in the single-digit nanomolar range can be observed (Table 2). Most of the β-amino acid-containing NTS(8-13) analogs (Table 1 and Fig.2), including the (68) Ga complexes of the DOTA-substituted ones (6; Figs.2 and 5), are stable for ca. 1 h in human serum and plasma, and in murine plasma. The biodistributions of two (68) Ga complexes (of 6a and 6b) in HT29 tumor-bearing nude mice, in the absence and in the presence of a blocking compound, after 10, 30, and 60 min (Figs. 3 and 4) lead to the conclusion that the amount of specifically bound radioligand is rather low. This was confirmed by PET-imaging experiments with the tumor-bearing mice (Fig.6). Comparison of the in vitro plasma stability (after 1 h) with the ex vivo blood content (after 10-15 min) of the two (68) Ga complexes shows that they are rapidly cleaved in the animals (Fig.5).
Resumo:
The complement C3a anaphylatoxin is a major molecular mediator of innate immunity. It is a potent activator of mast cells, basophils and eosinophils and causes smooth muscle contraction. Structurally, C3a is a relatively small protein (77 amino acids) comprising a N-terminal domain connected by 3 native disulfide bonds and a helical C-terminal segment. The structural stability of C3a has been investigated here using three different methods: Disulfide scrambling; Differential CD spectroscopy; and Reductive unfolding. Two uncommon features regarding the stability of C3a and the structure of denatured C3a have been observed in this study. (a) There is an unusual disconnection between the conformational stability of C3a and the covalent stability of its three native disulfide bonds that is not seen with other disulfide proteins. As measured by both methods of disulfide scrambling and differential CD spectroscopy, the native C3a exhibits a global conformational stability that is comparable to numerous proteins with similar size and disulfide content, all with mid-point denaturation of [GdmCl](1/2) at 3.4-5M. These proteins include hirudin, tick anticoagulant protein and leech carboxypeptidase inhibitor. However, the native disulfide bonds of C3a is 150-1000 fold less stable than those proteins as evaluated by the method of reductive unfolding. The 3 native disulfide bonds of C3a can be collectively and quantitatively reduced with as low as 1mM of dithiothreitol within 5 min. The fragility of the native disulfide bonds of C3a has not yet been observed with other native disulfide proteins. (b) Using the method of disulfide scrambling, denatured C3a was shown to consist of diverse isomers adopting varied extent of unfolding. Among them, the most extensively unfolded isomer of denatured C3a is found to assume beads-form disulfide pattern, comprising Cys(36)-Cys(49) and two disulfide bonds formed by two pair of consecutive cysteines, Cys(22)-Cys(23) and Cys(56)-Cys(57), a unique disulfide structure of polypeptide that has not been documented previously.
Resumo:
The human colon tumor cell line, LS174T, has been shown to have four major components of the drug metabolizing system; cytochrome b$\sb5$ reductase, cytochrome b$\sb5$, cytochrome P450 reductase and cytochrome P450, by activity measurements, spectral studies and antibody cross-reactivity. Cytochrome P450IA1 is induced by benzanthracene in these cells as shown by activity with the specific substrate, ethoxyresorufin, cross-reactivity with rabbit antibodies to rat IA1, and by a hybridizing band on a Northern blot to a rat IA1 probe.^ Further, this system has proven responsive to various inducers and conditions of growth. The enzyme activities were found stable over limited cell passages with control values of 0.03 and 0.13 $\mu$mol/min/mg protein for NADPH and NADH cytochrome c (cyt c) reducing activity, 0.05 nmol cyt b$\sb5$ per milligram and 0.013 nmol cytochrome P450 per milligram of microsomal protein. Phenobarbital/hydrocortisone treatment showed a consistent, but not always significant increase in the NADPH and NADH cyt c reducing activity and benzanthracene treatment an increase in the NADH cyt c reducing activity. Delta-aminolevulinic acid (0.5mM) caused a significant decrease in the specific activity of all enzyme contents and activities tested.^ Finally, the cytochrome b$\sb5$ to cytochrome P450, by the coordinate induction of the cytochrome b$\sb5$ pathway by P450 inducers, by the high ratio of NADH to NADPH ethoxycoumarin deethylase activity in uninduced cell microsomes, and by the increase in NADH and NADPH ethoxycoumarin deethylase activity when the microsomes were treated with potassium cyanide, a desaturase inhibitor. ^
Resumo:
Numerous co-factors, genetic, environmental and physical, play an important role in development and prognosis of cancer. Each year in the USA, more than 31,000 cases of oral and 13,000 cases of cervical cancer are diagnosed. Substantial epidemiological data supports a high correlation between development of these cancers and the presence of specific types of human papillomaviruses (HPV). Molecular biological studies show that not only are several of the viral genes necessary and sufficient to cause transformation but they also function synergistically with other co-factors. Evidence suggests that prevention of infection or inhibition of viral gene expression may alter the course of malignant transition. The main objective of this project was to test the hypothesis that some human carcinoma cells, containing HPV, behave in malignant manner because the viral genes function in the maintenance of some aspect of the transformed phenotype.^ The specific aims were (1) to select oral and cervical cancer cell lines which were HPV-negative or which harbored transcriptionally active HPV-18, (2) to construct and determine the effects of recombinant sense or antisense expressing vectors, (3) to test the effects of synthetic antisense oligodeoxynucleotides on the transformed behavior of these cells.^ To screen cells, we performed Southern and Northern analysis and polymerase chain reactions. When antisense-expressing vectors were used, cells harboring low numbers of HPV-18 where unable to survive transfection but they were readily transfected with all other constructs. Rare antisense transfectants obtained from HPV-positive cells showed significantly altered characteristics including malignant potential in nude mice. The HPV-negative cells showed no differences in transfection efficiencies or growth characteristics with any construct.^ In addition, treatment of the HPV-positive cells with antisense, but not random oligodeoxynucleotides, resulted in decreased cell proliferation and even cell death. These effects were dose-dependent, synergistic and HPV-specific.^ These results suggest that expression of viral genes play an important role in the maintenance of the transformed phenotype which implies that inhibition of expression, by antisense molecules, may be therapeutic in HPV-induced tumors. ^
Resumo:
Molecular and cytogenetic analyses of human glioblastomas have revealed frequent genetic alterations, including major deletions in chromosomes 9, 10, and 17, suggesting the presence of glioma-associated tumor suppressor genes on these chromosomes. To examine this hypothesis, copies of chromosomes 2, 4, and 10 derived from a human fibroblast cell line were independently introduced into a human glioma cell line, U251, by microcell-mediated chromosomal transfer. Successful transfer of chromosomes in each case was confirmed by resistance to the drug G418, indicating the presence of the neomycin-resistance gene previously integrated into each transferred chromosome. The presence of novel chromosomes and or chromosomal fragments was also demonstrated by molecular and karyotypic analyses. The hybrid clones containing either a novel chromosome 4 or chromosome 10 displayed suppression of the tumorigenic phenotype in vivo and suppression of the transformed phenotype in vitro, while cells containing a transferred chromosome 2 failed to alter their tumorigenic phenotype. The hybrid cells containing chromosome 4 or 10 exhibited a significant decrease in their saturation density, altered cellular morphology at high cell density, but only a slight decrease in their exponential growth rate. A dramatic decrease was observed in growth of cells with chromosome 4 or 10 in soft agarose, with the number and size of the colonies being greatly reduced, compared to the parental or chromosome 2 containing cells. The introduction of chromosome 4 or 10 also completely suppressed tumor formation in nude mice. These studies indicate that chromosome 10, as hypothesized, and chromosome 4, a novel finding for gliomas, harbor tumor suppressor loci that may be directly involved in the initiation or progression of normal glial precursors to human glioblastoma multiforme. ^
Resumo:
Variable number of tandem repeats (VNTR) are genetic loci at which short sequence motifs are found repeated different numbers of times among chromosomes. To explore the potential utility of VNTR loci in evolutionary studies, I have conducted a series of studies to address the following questions: (1) What are the population genetic properties of these loci? (2) What are the mutational mechanisms of repeat number change at these loci? (3) Can DNA profiles be used to measure the relatedness between a pair of individuals? (4) Can DNA fingerprint be used to measure the relatedness between populations in evolutionary studies? (5) Can microsatellite and short tandem repeat (STR) loci which mutate stepwisely be used in evolutionary analyses?^ A large number of VNTR loci typed in many populations were studied by means of statistical methods developed recently. The results of this work indicate that there is no significant departure from Hardy-Weinberg expectation (HWE) at VNTR loci in most of the human populations examined, and the departure from HWE in some VNTR loci are not solely caused by the presence of population sub-structure.^ A statistical procedure is developed to investigate the mutational mechanisms of VNTR loci by studying the allele frequency distributions of these loci. Comparisons of frequency distribution data on several hundreds VNTR loci with the predictions of two mutation models demonstrated that there are differences among VNTR loci grouped by repeat unit sizes.^ By extending the ITO method, I derived the distribution of the number of shared bands between individuals with any kinship relationship. A maximum likelihood estimation procedure is proposed to estimate the relatedness between individuals from the observed number of shared bands between them.^ It was believed that classical measures of genetic distance are not applicable to analysis of DNA fingerprints which reveal many minisatellite loci simultaneously in the genome, because the information regarding underlying alleles and loci is not available. I proposed a new measure of genetic distance based on band sharing between individuals that is applicable to DNA fingerprint data.^ To address the concern that microsatellite and STR loci may not be useful for evolutionary studies because of the convergent nature of their mutation mechanisms, by a theoretical study as well as by computer simulation, I conclude that the possible bias caused by the convergent mutations can be corrected, and a novel measure of genetic distance that makes the correction is suggested. In summary, I conclude that hypervariable VNTR loci are useful in evolutionary studies of closely related populations or species, especially in the study of human evolution and the history of geographic dispersal of Homo sapiens. (Abstract shortened by UMI.) ^