927 resultados para Chlamydia, conjunctivitis, cystitis, koalas, infertility, quantitative polymerase chain reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA synthesis, DNA repair and DNA methylation. Genetic polymorphisms of this enzyme have been shown to impact several diseases, including cancer. Leukemias are malignancies arising from rapidly proliferating hematopoietic cells having great requirement of DNA synthesis. This case-control study was undertaken to analyze the association of the MTHFR gene polymorphisms 677 C"T and 1298 A"C and the risk of acute lymphoblastic leukemia in children. Materials and Methods: Eighty-six patients aged below 15 years with a confirmed diagnosis of acute lymphoblastic leukemia (ALL) and 99 matched controls were taken for this study. Analysis of the polymorphisms was done using the polymerase chain reaction -restriction fragment length polymorphism (PCR-RFLP) method. Results: Frequency of MTHFR 677 CC and CT were 85.9% and 14.1% in the controls, and 84.9% and 15.1% in the cases. The 'T' allele frequency was 7% and 7.5% in cases and controls respectively. The frequency of MTHFR 1298 AA, AC, and CC were 28.3%, 55.6% and 16.1% for controls and 23.3%, 59.3% and 17.4% for cases respectively. The 'C' allele frequency for 1298 A→C was 43.9% and 47% respectively for controls and cases. The odds ratio (OR) for C677T was 1.08 (95% CI 0.48- 2.45, p = 0.851) and OR for A1298C was 1.29(95% CI 0.65-2.29, p = 0.46) and OR for 1298 CC was 1.31 (95% CI 0.53-3.26, p =0.56). The OR for the combined heterozygous status (677 CT and 1298 AC) was 1.94 (95% CI 0.58 -6.52, p = 0.286). Conclusion: The prevalence of 'T' allele for 677 MTHFR polymorphism was low in the population studied. There was no association between MTHFR 677 C→T and 1298 A→C gene polymorphisms and risk of ALL, which may be due to the small sample size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Limbal stem cell deficiency is a challenging clinical problem and the current treatment involves replenishing the depleted limbal stem cell (LSC) pool by either limbal tissue transplantation or use of cultivated limbal epithelial cells (LEC). Our experience of cultivating the LEC on denuded human amniotic membrane using a feeder cell free method, led to identification of mesenchymal cells of limbus (MC-L), which showed phenotypic resemblance to bone marrow derived mesenchymal stem cells (MSC-BM). To understand the transcriptional profile of these cells, microarray experiments were carried out.Methods: RNA was isolated from cultured LEC, MC-L and MSC-BM and microarray experiments were carried out by using Agilent chip (4x44 k). The microarray data was validated by using Realtime and semiquntitative reverse transcription polymerase chain reaction. Results: The microarray analysis revealed specific gene signature of LEC and MC-L, and also their complementary role related to cytokine and growth factor profile, thus supporting the nurturing roles of the MC-L. We have also observed similar and differential gene expression between MC-L and MSC-BM.Conclusions: This study represents the first extensive gene expression analysis of limbal explant culture derived epithelial and mesenchymal cells and as such reveals new insight into the biology, ontogeny, and in vivo function of these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autoimmune regulator (AIRE) is the gene mutated in the human polyglandular autoimmune disease called Autoimmune polyendocrinopathy, candidiasis, and ectodermal dystrophy (APECED) that belongs to the Finnish disease heritage. Murine Aire has been shown to be important in the generation of the T cell central tolerance in the thymus by promoting the expression of ectopic tissue-specific antigens in the thymic medulla. Aire is also involved in the thymus tissue organization during organogenesis. In addition to the thymus, AIRE/Aire is expressed in the secondary lymphoid organs. Accordingly, a role for AIRE/Aire in the maintenance of peripheral tolerance has been suggested. Peripheral tolerance involves mechanisms that suppress immune responses in secondary lymphoid organs. Regulatory T cells (Tregs) are an important suppressive T cell population mediating the peripheral tolerance. Tregs are generated in the thymus but also in the peripheral immune system T cells can acquire the Treg-phenotype. The aim of this study was to characterize Tregs in APECED patients and in the APECED mouse model (Aire-deficient mice). In the mouse model, it was possible to separate Aire expression in the thymus and in the secondary lymphoid organs. The relative importance of thymic and peripheral Aire expression in the maintenance of immunological tolerance was studied in an experimental model that was strongly biased towards autoimmunity, i.e. lymphopenia-induced proliferation (LIP) of lymphocytes. This experimental model was also utilised to study the behaviour of T cells with dual-specific T cell receptors (TCR) during the proliferation. The Treg phenotype was studied by flow cytometry and relative gene expression with real-time polymerase chain reaction. TCR repertoires of the Tregs isolated from APECED patients and healthy controls were also compared. The dual-specific TCRs were studied with the TCR repertoire analysis that was followed with sequencing of the chosen TCR genes in order to estimate changes in the dual-specific TCR diversity. The Treg function was tested with an in vitro suppression assay. The APECED patients had normal numbers of Tregs but the phenotype and suppressive functions of the Tregs were impaired. In order to separate Aire functions in the thymus from its yet unknown role in the secondary lymphoid organs, the phenomenon of LIP was utilised. In this setting, the lymphocytes that are adoptively transferred to a lymphopenic recipient proliferate to stimuli from self-originating antigens. This proliferation can result in autoimmunity if peripheral tolerance is not fully functional. When lymphocytes that had matured without Aire in the thymus were transferred to lymphopenic Aire-sufficient recipients, no clinical autoimmunity followed. The Aire-deficient donor-originating lymphocytes hyperproliferated, and other signs of immune dysregulation were also found in the recipients. Overt autoimmunity, however, was prevented by the Aire-deficient donor-originating Tregs that hyperproliferated in the recipients. Aire-deficient lymphopenic mice were used to study whether peripheral loss of Aire had an impact on the maintenance of peripheral tolerance. When normal lymphocytes were transferred to these Aire-deficient lymphopenic recipients, the majority of recipients developed a clinically symptomatic colitis. The colitis was confirmed also by histological analysis of the colon tissue sections. In the Aire-deficient lymphopenic recipients Tregs were proliferating significantly less than in the control group s recipients that had normal Aire expression in their secondary lymphoid organs. This study shows that Aire is not only important in the central tolerance but is also has a significant role in the maintenance of the peripheral tolerance both in mice and men. Aire expressed in the secondary lymphoid organs is involved in the functions of Tregs during an immune response. This peripheral expression appears to be relatively more important in some situations since only those lymphopenic recipients that had lost peripheral expression of Aire developed a symptomatic autoimmune disease. This AIRE-related Treg defect could be clinically important in understanding the pathogenesis of APECED.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Combination antiretroviral therapy (cART) has decreased morbidity and mortality of individuals infected with human immunodeficiency virus type 1 (HIV-1). Its use, however, is associated with adverse effects which increase the patients risk of conditions such as diabetes and coronary heart disease. Perhaps the most stigmatizing side effect is lipodystrophy, i.e., the loss of subcutaneous adipose tissue (SAT) in the face, limbs and trunk while fat accumulates intra-abdominally and dorsocervically. The pathogenesis of cART-associated lipodystrophy is obscure. Nucleoside reverse transcriptase inhibitors (NRTI) have been implicated to cause lipoatrophy via mitochondrial toxicity. There is no known effective treatment for cART-associated lipodystrophy during unchanged antiretroviral regimen in humans, but in vitro data have shown uridine to abrogate NRTI-induced toxicity in adipocytes. Aims: To investigate whether i) cART or lipodystrophy associated with its use affect arterial stiffness; ii) lipoatrophic SAT is inflamed compared to non-lipoatrophic SAT; iii) abdominal SAT from patients with compared to those without cART-associated lipoatrophy differs with respect to mitochondrial DNA (mtDNA) content, adipose tissue inflammation and gene expression, and if NRTIs stavudine and zidovudine are associated with different degree of changes; iv) lipoatrophic abdominal SAT differs from preserved dorsocervical SAT with respect to mtDNA content, adipose tissue inflammation and gene expression in patients with cART-associated lipodystrophy and v) whether uridine can revert lipoatrophy and the associated metabolic disturbances in patients on stavudine or zidovudine based cART. Subjects and methods: 64 cART-treated patients with (n=45) and without lipodystrophy/-atrophy (n=19) were compared cross-sectionally. A marker of arterial stiffness, heart rate corrected augmentation index (AgIHR), was measured by pulse wave analysis. Body composition was measured by magnetic resonance imaging and dual-energy X-ray absorptiometry, and liver fat content by proton magnetic resonance spectroscopy. Gene expression and mtDNA content in SAT were assessed by real-time polymerase chain reaction and microarray. Adipose tissue composition and inflammation were assessed by histology and immunohistochemistry. Dorsocervical and abdominal SAT were studied. The efficacy and safety of uridine for the treatment of cART-associated lipoatrophy were evaluated in a randomized, double-blind, placebo-controlled 3-month trial in 20 lipoatrophic cART-treated patients. Results: Duration of antiretroviral treatment and cumulative exposure to NRTIs and protease inhibitors, but not the presence of cART-associated lipodystrophy, predicted AgIHR independent of age and blood pressure. Gene expression of inflammatory markers was increased in SAT of lipodystrophic as compared to non-lipodystrophic patients. Expression of genes involved in adipogenesis, triglyceride synthesis and glucose disposal was lower and of those involved in mitochondrial biogenesis, apoptosis and oxidative stress higher in SAT of patients with than without cART-associated lipoatrophy. Most changes were more pronounced in stavudine-treated than in zidovudine-treated individuals. Lipoatrophic SAT had lower mtDNA than SAT of non-lipoatrophic patients. Expression of inflammatory genes was lower in dorsocervical than in abdominal SAT. Neither depot had characteristics of brown adipose tissue. Despite being spared from lipoatrophy, dorsocervical SAT of lipodystrophic patients had lower mtDNA than the phenotypically similar corresponding depot of non-lipodystrophic patients. The greatest difference in gene expression between dorsocervical and abdominal SAT, irrespective of lipodystrophy status, was in expression of homeobox genes that regulate transcription and regionalization of organs during embryonal development. Uridine increased limb fat and its proportion of total fat, but had no effect on liver fat content and markers of insulin resistance. Conclusions: Long-term cART is associated with increased arterial stiffness and, thus, with higher cardiovascular risk. Lipoatrophic abdominal SAT is characterized by inflammation, apoptosis and mtDNA depletion. As mtDNA is depleted even in non-lipoatrophic dorsocervical SAT, lipoatrophy is unlikely to be caused directly by mtDNA depletion. Preserved dorsocervical SAT of patients with cART-associated lipodystrophy is less inflamed than their lipoatrophic abdominal SAT, and does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal SAT is in expression of transcriptional regulators, homeobox genes, which might explain the differential susceptibility of these adipose tissue depots to cART-induced toxicity. Uridine is able to increase peripheral SAT in lipoatrophic patients during unchanged cART.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study examined the association of -866G/A, Ala55Val, 45bpI/D, and -55C/T polymorphisms at the uncoupling protein (UCP) 3-2 loci with type 2 diabetes in Asian Indians. Methods: A case-control study was performed among 1,406 unrelated subjects (487 with type 2 diabetes and 919 normal glucose-tolerant NGT]), chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in Southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Haplotype frequencies were estimated using an expectation-maximization algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. Results: The genotype (P = 0.00006) and the allele (P = 0.00007) frequencies of Ala55Val of the UCP2 gene showed a significant protective effect against the development of type 2 diabetes. The odds ratios (adjusted for age, sex, and body mass index) for diabetes for individuals carrying Ala/Val was 0.72, and that for individuals carrying Val/Val was 0.37. Homeostasis insulin resistance model assessment and 2-h plasma glucose were significantly lower among Val-allele carriers compared to the Ala/Ala genotype within the NGT group. The genotype (P = 0.02) and the allele (P = 0.002) frequencies of -55C/T of the UCP3 gene showed a significant protective effect against the development of diabetes. The odds ratio for diabetes for individuals carrying CT was 0.79, and that for individuals carrying TT was 0.61. The haplotype analyses further confirmed the association of Ala55Val with diabetes, where the haplotypes carrying the Ala allele were significantly higher in the cases compared to controls. Conclusions: Ala55Val and -55C/T polymorphisms at the UCP3-2 loci are associated with a significantly reduced risk of developing type 2 diabetes in Asian Indians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of progesterone receptors (PR) in the human placenta has been demonstrated using the reverse transcriptase-polymerase chain reaction technique. It was observed that the amount of PR in the human placenta is less during late gestation. Electrophoretic mobility shift assays with nuclear extract isolated from the first trimester and term placenta revealed three complexes when incubated with [P-32]dCTP-labelled progesterone response element, and, in competition with unlabelled progesterone response element, the formation of all three complexes was inhibited. When supershift analysis of these complexes was carried out using antibodies which cross-react with both the A and B types of the PR or only with the B type receptor, only the A-form of PR was detected in the human placenta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microchip thermocycler, fabricated from silicon and Pyrex #7740 glass, is described. Usual resistive heating has been replaced by induction heating, leading to much simpler fabrication steps. Heating and cooling rates of 6.5 and 4.2 degreesC/s, respectively have been achieved, by optimising the heater dimensions and heating frequency (similar to200 kHz). Four devices are mounted on a heater, resulting in low power consumption (similar to 1.4 W per device on the average). Using simple on-off electronic temperature control, a temperature stability within -0.2 degreesC is achieved. Features such as induction heating, good temperature control, battery operation, and low power consumption make the device suitable for portable applications, particularly in polymerase chain reaction (PCR) systems. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is a membrane-associated form of guanylyl cyclase and serves as the receptor for the heat-stable enterotoxin (ST) peptide and endogenous ligands guanylin, uroguanylin, and lymphoguanylin. The major site of expression of GC-C is the intestinal epithelial cell, although GC-C is also expressed in extraintestinal tissue such as the kidney, airway epithelium, perinatal liver, stomach, brain, and adrenal glands. Binding of ligands to GC-C leads to accumulation of intracellular cGMP, the activation of protein kinases G and A, and phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that regulates salt and water secretion. We examined the expression of GC-C and its ligands in various tissues of the reproductive tract of the rat. Using reverse transcriptase and the polymerase chain reaction, we demonstrated the presence of GC-C, uroguanylin, and guanylin mRNA in both male and female reproductive organs. Western blot analysis using a monoclonal antibody to GC-C revealed the presence of differentially glycosylated forms of GC-C in the caput and cauda epididymis. Exogenous addition of uroguanylin to minced epididymal tissue resulted in cGMP accumulation, suggesting an autocrine or endocrine activation of GC-C in this tissue. Immunohistochemical analyses demonstrated expression of GC-C in the tubular epithelial cells of both the caput epididymis and cauda epididymis. Our results suggest that the GC-C signaling pathway could converge on CFTR in the epididymis and perhaps control fluid and ion balance for optimal sperm maturation and storage in this tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugarcane streak mosaic virus (SCSMV), causes mosaic disease of sugarcane and is thought to belong to a new undescribed genus in the family Potyviridae. The coat protein (CP) gene from the Andhra Pradesh (AP) isolate of SCSMV (SCSMV AP) was cloned and expressed in Escherichia coli. The recombinant coat protein was used to raise high quality antiserum. The CP antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) based assay for the detection and discrimination of SCSMV isolates in South India. The sequence of the cloned PCR products encoding 3'untranslated region (UTR) and CP regions of the virus isolates from three different locations in South India viz. Tanuku (Coastal Andhra Pradesh), Coimbatore (Tamil Nadu) and Hospet (Karnataka) was compared with that of SCSMV AP The analysis showed that they share 89.4, 89.5 and 90% identity respectively at the nucleotide level. This suggests that the isolates causing mosaic disease of sugarcane in South India are indeed strains of SCSMV In addition, the sensitivity of the IC-RT-PCR was compared with direct antigen coating-enzyme linked immunosorbent assay (DAC-ELISA) and dot-blot immunobinding assays and was found to be more sensitive and hence could be used to detect the presence of virus in sugarcane breeding, germplasm centres and in quarantine programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zebrafish (Danio rerio) embryos are transparent and advantageous for studying early developmental changes due to ex utero development, making them an appropriate model for studying gene expression changes as a result of molecular targeting. Zebrafish embryos were injected with a previously reported G-quadruplex selective ligand, and the phenotypic changes were recorded. We report marked discrepancies in the development of intersegmental vessels. In silico analysis determined that the putative G-quadruplex motif occur in the upstream promoter region of the Cdh5 (N-cadherin) gene. A real-time polymerase chain reaction-based investigation indicated that in zebrafish, CDH-2 (ZN-cad) was significantly downregulated in the ligand-treated embryos. Biophysical characterization of the interaction of the ligand with the G-quadruplex motif found in this promoter yielded strong binding and stabilization of the G-quadruplex with this ligand. Hence, we report for the first time the phenotypic impact of G-quadruplex targeting with a ligand in a vertebrate organism. This study has unveiled not only G-quadruplex targeting in non-human animal species but also the potential that G-quadruplexes can provide a ready tool for understanding the phenotypic effects of targeting certain important genes involved in differentiation and developmental processes in a living eukaryotic organism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 M) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and PI tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object. Insulin-like growth factor binding proteins (IGEBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. Methods. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. Results. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. Conclusions. IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.