994 resultados para Chemistry, Agricultural.
Resumo:
Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at~2meV relative kinetic energy about 50% of the DR events involve only ruptures of X–H bonds (where X=C or N)while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H2). The absolute DR cross section has been investigated for relative kinetic energies ranging from ~1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 × 10-6 (T/300)-0.80 cm3 s-1 for electron temperatures ranging from ~10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan’s upper atmosphere are discussed.
Resumo:
We have investigated the role of molecular anion chemistry in pseudo-time-dependent chemical models of dark clouds. With oxygen-rich elemental abundances, the addition of anions results in a slight improvement in the overall agreement between model results and observations of molecular abundances in Taurus molecular cloud 1 (TMC-1 (CP)). More importantly, with the inclusion of anions, we see an enhanced production efficiency of unsaturated carbon-chain neutral molecules, especially in the longer members of the families C(n)H, C(n)H(2), and HC(n)N. The use of carbon-rich elemental abundances in models of TMC-1 (CP) with anion chemistry worsens the agreement with observations compared with model results obtained in the absence of anions.
Resumo:
About 100 million rural people in Asia are exposed to arsenic (As)-polluted drinking water and agricultural products. Total and inorganic arsenic (t-As and i-As) intake mainly depend on the quality of drinking and cooking waters, and amounts of seafood and rice consumed. The main problems occur in countries with poor water quality where the population depends on rice for their diet, and their t-As and i-As intake is high as a result of growing and cooking rice in contaminated water. Workable solutions to remove As from water and breeding rice cultivars with low As accumulation are being sought. In the meantime, simple recommendations for processing and cooking foods will help to reduce As intake. For instance, cooking using high volumes of As-free water may be a cheap way of reducing As exposure in rural populations. It is necessary to consider the effects of cooking and processing on t-As and i-As to obtain a realistic view of the risks associated with intake of As in Asendemic areas.
Resumo:
The investigations into structural changes which occur during adsorbent modification and the adsorption mechanisms are essential for an effective design of adsorption systems. Manganese oxides were impregnated onto diatomite to form the type known as delta-birnessite. Initial investigations established the effectiveness of manganese oxides-modified diatomite (MOMD) to remove basic and reactive dyes from aqueous solution. The adsorption capacity of MOMD for methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was 320, 419, and 204 mg/g, respectively. Various analytical techniques were used to characterise the structure and the mechanisms of the dye adsorption process onto MOMD such as Fourier transform infrared (FTIR), X-ray diffraction (XRD) and atomic absorption spectrometry (A.A.). A small shift to higher values of the cl-spacing of dye/MOMD was observed indicating that a small amount of the dye molecules were intercalated in the MOMD structure and other molecules were adsorbed on the external surface of MOMD. Two mechanisms of dye adsorption onto MOMD were proposed; intercalation of the dye in the octahedral layers and adsorption of the dye on the MOMD external surface. Moreover, the results demonstrated that the MOMD structure was changed upon insertion of MB and RY with an obvious decrease in the intensity of the second main peak of the MOMD X-ray pattern. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We have developed new models of the chemistry of deuterium for investigating fractionation in interstellar molecular clouds. We have incorporated the latest information on reactions which affect deuteration, extended previous models to include S-D bonds for the first time and included the gasphase chemistry of some doubly-deuterated species. We present models for a wide range of physical parameters, including density, temperature, elemental abundances, and the freeze out of molecules on to dust grains. We discuss the detailed fractionation of particular species and show how fractionation can be used to probe the history of interstellar matter. The freeze out of molecules onto dust leads to significant enhancement in fractionation ratios and, in particular, to large fractionation in doubly-deuterated species.
Resumo:
At the heavy ion storage ring CRYRING in Stockholm, Sweden, we have investigated the dissociative recombination of DCOOD2+ at low relative kinetic energies, from ~1 meV to 1 eV. The thermal rate coefficient has been found to follow the expression k(T) = 8.43 × 10-7 (T/300)^-0.78 cm3 s-1 for electron temperatures, T, ranging from ~10 to ~1000 K. The branching fractions of the reaction have been studied at ~2 meV relative kinetic energy. It has been found that ~87% of the reactions involve breaking a bond between heavy atoms. In only 13% of the reactions do the heavy atoms remain in the same product fragment. This puts limits on the gas-phase production of formic acid, observed in both molecular clouds and cometary comae. Using the experimental results in chemical models of the dark cloud, TMC-1, and using the latest release of the UMIST Database for Astrochemistry improves the agreement with observations for the abundance of formic acid. Our results also strengthen the assumption that formic acid is a component of cometary ices.
Resumo:
Near-infrared-emitting rare-earth chelates based on 8-hydroxyquinoline have appeared frequently in recent literature, because they are promising candidates for active components in near-infrared-luminescent optical devices, such as optical amplifiers, organic light-emitting diodes, .... Unfortunately, the absence of a full structural investigation of these rare-earth quinolinates is hampering the further development of rare-earth quinolinate based materials, because the luminescence output cannot be related to the structural properties. After an elaborate structural elucidation of the rare-earth quinolinate chemistry we can conclude that basically three types of structures can be formed, depending on the reaction conditions: tris complexes, corresponding to a 1:3 metal-to-ligand ratio, tetrakis complexes, corresponding to a 1:4 metal-to-ligand ratio, and trimeric complexes, with a 3:8 metal-to-ligand ratio. The intensity of the emitted near-infrared luminescence of the erbium(Ill) complexes is highest for the tetrakis complexes of the dihalogenated 8-hydroxyquinolinates.