921 resultados para ChIP-Seq


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large digital chips use a significant amount of energy to distribute a multi-GHz clock. By discharging the clock network to ground every cycle, the energy stored in this large capacitor is wasted. Instead, the energy can be recovered using an on-chip DC-DC converter. This paper investigates the integration of two DC-DC converter topologies, boost and buck-boost, with a high-speed clock driver. The high operating frequency significantly shrinks the required size of the L and C components so they can be placed on-chip; typical converters place them off-chip. The clock driver and DC-DC converter are able to share the entire tapered buffer chain, including the widest drive transistors in the final stage. To achieve voltage regulation, the clock duty cycle must be modulated; implying only single-edge-triggered flops should be used. However, this minor drawback is eclipsed by the benefits: by recovering energy from the clock, the output power can actually exceed the additional power needed to operate the converter circuitry, resulting in an effective efficiency greater than 100%. Furthermore, the converter output can be used to operate additional power-saving features like low-voltage islands or body bias voltages. ©2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power consumption of a multi-GHz local clock driver is reduced by returning energy stored in the clock-tree load capacitance back to the on-chip power-distribution grid. We call this type of return energy recycling. To achieve a nearly square clock waveform, the energy is transferred in a non-resonant way using an on-chip inductor in a configuration resembling a full-bridge DC-DC converter. A zero-voltage switching technique is implemented in the clock driver to reduce dynamic power loss associated with the high switching frequencies. A prototype implemented in 90 nm CMOS shows a power savings of 35% at 4 GHz. The area needed for the inductor in this new clock driver is about 6% of a local clock region. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design and manufacture of a prototype chip level power supply is described, with both simulated and experimental results. Of particular interest is the inclusion of a fully integrated on-chip LC filter. A high switching frequency of 660MHz and the design of a device drive circuit reduce losses by supply stacking, low-swing signaling and charge recycling. The paper demonstrates that a chip level converter operating at high frequency can be built and shows how this can be achieved, using zero voltage switching techniques similar to those commonly used in larger converters. Both simulations and experimental data from a fabricated circuit in 0.18μm CMOS are included. The circuit converts 2.2V to 0.75∼1.0V at ∼55mA. ©2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low specific on-resistance (R-{{\rm on}, {\rm sp}}) integrable silicon-on-insulator (SOI) MOSFET is proposed, and its mechanism is investigated by simulation. The SOI MOSFET features double trenches and dual gates (DTDG SOI): an oxide trench in the drift region, a buried gate inset in the oxide trench, and another trench gate (TG) extended to a buried oxide layer. First, the dual gates form dual conduction channels, and the extended gate widens the vertical conduction area; both of which sharply reduce R-{{\rm on}, {\rm sp}}. Second, the oxide trench folds the drift region in the vertical direction, resulting in a reduced device pitch and R-{{\rm on}, {\rm sp}}. Third, the oxide trench causes multidirectional depletion. This not only enhances the reduced surface field effect and thus reshapes the electric field distribution but also increases the drift doping concentration, leading to a reduced R-{{\rm on}, {\rm sp}} and an improved breakdown voltage (BV). Compared with a conventional SOI lateral Double-diffused metal oxide semiconductor (LDMOS), the DTDG MOSFET increases BV from 39 to 92 V at the same cell pitch or decreases R-{{\rm on}, { \rm sp}} by 77% at the same BV by simulation. Finally, the TG extended synchronously acts as an isolation trench between the high/low-voltage regions in a high-voltage integrated circuit, saving the chip area and simplifying the isolation process. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper shows that film bulk acoustic resonator (FBAR) arrays can be very useful sensors either to detect physical parameters such as temperature and pressure directly or to detect bio-chemicals with extremely high sensitivities by incorporating a chemisorption layer or bio-probe molecules. Furthermore, it also shows that surface acoustic wave devices can be integrated with a FBAR sensor array on the same piezoelectric substrate as the microfluidics systems to perform transportation and mixing of biosamples etc. demonstrating the possibility to fabricate integrated lab-on-a-chip detection systems, in which all the actuators and sensors are operated by acoustic wave devices. This makes the detection system simple, low cost and easy to operate and hence has great commercial potential. © 2011 Inderscience Enterprises Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bio-inspired designs can provide an answer to engineering problems such as swimming strategies at the micron or nano-scale. Scientists are now designing artificial micro-swimmers that can mimic flagella-powered swimming of micro-organisms. In an application such as lab-on-a-chip in which micro-object manipulation in small flow geometries could be achieved by micro-swimmers, control of the swimming direction becomes an important aspect for retrieval and control of the micro-swimmer. A bio-inspired approach for swimming direction reversal (a flagellum bearing mastigonemes) can be used to design such a system and is being explored in the present work. We analyze the system using a computational framework in which the equations of solid mechanics and fluid dynamics are solved simultaneously. The fluid dynamics of Stokes flow is represented by a 2D Stokeslets approach while the solid mechanics behavior is realized using Euler-Bernoulli beam elements. The working principle of a flagellum bearing mastigonemes can be broken up into two parts: (1) the contribution of the base flagellum and (2) the contribution of mastigonemes, which act like cilia. These contributions are counteractive, and the net motion (velocity and direction) is a superposition of the two. In the present work, we also perform a dimensional analysis to understand the underlying physics associated with the system parameters such as the height of the mastigonemes, the number of mastigonemes, the flagellar wave length and amplitude, the flagellum length, and mastigonemes rigidity. Our results provide fundamental physical insight on the swimming of a flagellum with mastigonemes, and it provides guidelines for the design of artificial flagellar systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for lab-on-a-chip applications. The artificial cilia are fabricated using thin polymer films with embedded magnetic nano-particles and their deformation is studied under different external magnetic fields and flows. A coupled magneto-mechanical solid-fluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminum nitride (AlN) piezoelectric thin films with c-axis crystal orientation on polymer substrates can potentially be used for development of flexible electronics and lab-on-chip systems. In this study, we investigated the effects of deposition parameters on the crystal structure of AlN thin films on polymer substrates deposited by reactive direct-current magnetron sputtering. The results show that low sputtering pressure as well as optimized N 2/Ar flow ratio and sputtering power is beneficial for AlN (002) orientation and can produce a highly (002) oriented columnar structure on polymer substrates. High sputtering power and low N 2/Ar flow ratio increase the deposition rate. In addition, the thickness of Al underlayer also has a strong influence on the film crystallography. The optimal deposition parameters in our experiments are: deposition pressure 0.38 Pa, N 2/Ar flow ratio 2:3, sputtering power 414 W, and thickness of Al underlayer less than 100 nm. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first monolithically integrated 44 switch with power monitoring function using on-chip PIN photodiodes is reported. Using 10Gb/s signals, under active power control an IPDR of 12dB for a 1dB power penalty is achieved. © 2012 OSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an on-chip integrated ferroelectric liquid crystal (FLC) waveguide structure suitable for telecommunication applications. Single gaps with different widths of 5, 10, and 20 μ m inside individual silica waveguides were filled with an FLC mixture. The waveguide devices operate as a binary switch or an attenuator in a temperature range from 30 °C to 60 °C. The FLC mixture exhibited a good alignment quality in these gaps without alignment layers. A good extinction ratio of up to 33.9 dB and a low insertion loss of <4.3 dB at λ = 1550 nm were observed. Switching times of <100 μs were obtained for the low electric fields applied in this experiment. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MOTIVATION: The integration of multiple datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct-but often complementary-information. We present a Bayesian method for the unsupervised integrative modelling of multiple datasets, which we refer to as MDI (Multiple Dataset Integration). MDI can integrate information from a wide range of different datasets and data types simultaneously (including the ability to model time series data explicitly using Gaussian processes). Each dataset is modelled using a Dirichlet-multinomial allocation (DMA) mixture model, with dependencies between these models captured through parameters that describe the agreement among the datasets. RESULTS: Using a set of six artificially constructed time series datasets, we show that MDI is able to integrate a significant number of datasets simultaneously, and that it successfully captures the underlying structural similarity between the datasets. We also analyse a variety of real Saccharomyces cerevisiae datasets. In the two-dataset case, we show that MDI's performance is comparable with the present state-of-the-art. We then move beyond the capabilities of current approaches and integrate gene expression, chromatin immunoprecipitation-chip and protein-protein interaction data, to identify a set of protein complexes for which genes are co-regulated during the cell cycle. Comparisons to other unsupervised data integration techniques-as well as to non-integrative approaches-demonstrate that MDI is competitive, while also providing information that would be difficult or impossible to extract using other methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New embedded predictive control applications call for more eficient ways of solving quadratic programs (QPs) in order to meet demanding real-time, power and cost requirements. A single precision QP-on-a-chip controller is proposed, implemented in afield-programmable gate array (FPGA) with an iterative linear solver at its core. A novel offline scaling procedure is introduced to aid the convergence of the reduced precision solver. The feasibility of the proposed approach is demonstrated with a real-time hardware-in-the-loop (HIL) experimental setup where an ML605 FPGA board controls a nonlinear model of a Boeing 747 aircraft running on a desktop PC through an Ethernet link. Simulations show that the quality of the closed-loop control and accuracy of individual solutions is competitive with a conventional double precision controller solving linear systems using a Riccati recursion. © 2012 IFAC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel film bulk acoustic resonator (FBAR) with two resonant frequencies which have opposite reactions to temperature changes has been designed. The two resonant modes respond differently to changes in temperature and pressure, with the frequency shift being linearly correlated with temperature and pressure changes. By utilizing the FBAR's sealed back trench as a cavity, an on-chip single FBAR sensor suitable for measuring pressure and temperature simultaneously is proposed and demonstrated. The experimental results show that the pressure coefficient of frequency for the lower frequency peak of the FBAR sensors is approximately -17.4 ppm kPa-1, while that for the second peak is approximately -6.1 ppm kPa-1, both of them being much more sensitive than other existing pressure sensors. This dual mode on-chip pressure sensor is simple in structure and operation, can be fabricated at very low cost, and yet requires no specific package, therefore has great potential for applications. © 2012 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以白洋淀PFU(PolyurethaneFoamUnit)微型生物群落为种源(epicenter),评价上游工业废水的生态毒性.结果表明,在反映原生动物群集过程的3个参数Seq、G和T90%中,Seq与工业废水体积分数(φ)呈负相关.根据其回归方程Seq=42.22857-0.33374φ(R2=0.9042,P<0.01)推算出工业废水的效应浓度EC5、EC20和EC50,分别为6.3%、25.3%和65.2%.以此确定上游工业废水对白洋淀微型生物群落的无效应浓度为6.3%,最大允许浓度(MATC)为2