975 resultados para Central Adaptation
Resumo:
This Technical Paper is a basic guide to carp pond polyculture practicable in the Central and Eastern Europe (CEE) and the Caucasus and Central Asia (CCA) countries. It provides an overview on the guiding principles, aspects and tasks, and presents the most applicable production techniques and patterns of carp polyculture. For further reading and more in-depth information on the suggested techniques and technologies, it also includes a list of relevant FAO publications. It is expected that this publication will help identify resources and contribute to the successful planning and realization of fish production by those fish pond owners and operators who need to strengthen and improve their knowledge on the subject.
Resumo:
A self-produced tactile stimulus is perceived as less ticklish than the same stimulus generated externally. We used fMRI to examine neural responses when subjects experienced a tactile stimulus that was either self-produced or externally produced. More activity was found in somatosensory cortex when the stimulus was externally produced. In the cerebellum, less activity was associated with a movement that generated a tactile stimulus than with a movement that did not. This difference suggests that the cerebellum is involved in predicting the specific sensory consequences of movements, providing the signal that is used to cancel the sensory response to self-generated stimulation.
Resumo:
As the use of found data increases, more systems are being built using adaptive training. Here transforms are used to represent unwanted acoustic variability, e.g. speaker and acoustic environment changes, allowing a canonical model that models only the "pure" variability of speech to be trained. Adaptive training may be described within a Bayesian framework. By using complexity control approaches to ensure robust parameter estimates, the standard point estimate adaptive training can be justified within this Bayesian framework. However during recognition there is usually no control over the amount of data available. It is therefore preferable to be able to use a full Bayesian approach to applying transforms during recognition rather than the standard point estimates. This paper discusses various approximations to Bayesian approaches including a new variational Bayes approximation. The application of these approaches to state-of-the-art adaptively trained systems using both CAT and MLLR transforms is then described and evaluated on a large vocabulary speech recognition task. © 2005 IEEE.
Resumo:
The study objectives are to describe seasonal and successional variation in rocky intertidal community structure; determine the response of rocky intertidal communities to natural and human-induced disturbances and correlate these responses with successional, seasonal, and latitudinal variation; and correlate life history information and oil toxicity data with data from this and other relevant studies. The Year III and IV report is for the third (1987) and fourth (1988) years of a five-year field experimental study investigating two biological assemblages, the Mytilus assemblage and the Endocladia/Mastocarpus papillatus assemblage, that are being studied at six sites along the California coast. Volume I includes the report, Appendix A, and Appendix B. Volume II includes Appendix C. Volume III includes Appendix D. Volume IV includes Appendix E and Appendix F. Volume V includes Appendix G, Appendix H, and Appendix I.
Resumo:
Discriminative mapping transforms (DMTs) is an approach to robustly adding discriminative training to unsupervised linear adaptation transforms. In unsupervised adaptation DMTs are more robust to unreliable transcriptions than directly estimating adaptation transforms in a discriminative fashion. They were previously proposed for use with MLLR transforms with the associated need to explicitly transform the model parameters. In this work the DMT is extended to CMLLR transforms. As these operate in the feature space, it is only necessary to apply a different linear transform at the front-end rather than modifying the model parameters. This is useful for rapidly changing speakers/environments. The performance of DMTs with CMLLR was evaluated on the WSJ 20k task. Experimental results show that DMTs based on constrained linear transforms yield 3% to 6% relative gain over MLE transforms in unsupervised speaker adaptation. © 2011 IEEE.
Resumo:
Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.
Resumo:
Details are given of the finding of Panulirus versicolor from the central Andhra coast of India for the first time, including also a brief description of the specimen, which was found in 1983.
Resumo:
This study compared the mechanisms of adaptation to stable and unstable dynamics from the perspective of changes in joint mechanics. Subjects were instructed to make point to point movements in force fields generated by a robotic manipulandum which interacted with the arm in either a stable or an unstable manner. After subjects adjusted to the initial disturbing effects of the force fields they were able to produce normal straight movements to the target. In the case of the stable interaction, subjects modified the joint torques in order to appropriately compensate for the force field. No change in joint torque or endpoint force was required or observed in the case of the unstable interaction. After adaptation, the endpoint stiffness of the arm was measured by applying displacements to the hand in eight different directions midway through the movements. This was compared to the stiffness measured similarly during movements in a null force field. After adaptation, the endpoint stiffness under both the stable and unstable dynamics was modified relative to the null field. Adaptation to unstable dynamics was achieved by selective modification of endpoint stiffness in the direction of the instability. To investigate whether the change in endpoint stiffness could be accounted for by change in joint torque or endpoint force, we estimated the change in stiffness on each trial based on the change in joint torque relative to the null field. For stable dynamics the change in endpoint stiffness was accurately predicted. However, for unstable dynamics the change in endpoint stiffness could not be reproduced. In fact, the predicted endpoint stiffness was similar to that in the null force field. Thus, the change in endpoint stiffness seen after adaptation to stable dynamics was directly related to changes in net joint torque necessary to compensate for the dynamics in contrast to adaptation to unstable dynamics, where a selective change in endpoint stiffness occurred without any modification of net joint torque.
Resumo:
Recently, we demonstrated that humans can learn to make accurate movements in an unstable environment by controlling magnitude, shape, and orientation of the endpoint impedance. Although previous studies of human motor learning suggest that the brain acquires an inverse dynamics model of the novel environment, it is not known whether this control mechanism is operative in unstable environments. We compared learning of multijoint arm movements in a "velocity-dependent force field" (VF), which interacted with the arm in a stable manner, and learning in a "divergent force field" (DF), where the interaction was unstable. The characteristics of error evolution were markedly different in the 2 fields. The direction of trajectory error in the DF alternated to the left and right during the early stage of learning; that is, signed error was inconsistent from movement to movement and could not have guided learning of an inverse dynamics model. This contrasted sharply with trajectory error in the VF, which was initially biased and decayed in a manner that was consistent with rapid feedback error learning. EMG recorded before and after learning in the DF and VF are also consistent with different learning and control mechanisms for adapting to stable and unstable dynamics, that is, inverse dynamics model formation and impedance control. We also investigated adaptation to a rotated DF to examine the interplay between inverse dynamics model formation and impedance control. Our results suggest that an inverse dynamics model can function in parallel with an impedance controller to compensate for consistent perturbing force in unstable environments.
Resumo:
This study compared adaptation in novel force fields where trajectories were initially either stable or unstable to elucidate the processes of learning novel skills and adapting to new environments. Subjects learned to move in a null force field (NF), which was unexpectedly changed either to a velocity-dependent force field (VF), which resulted in perturbed but stable hand trajectories, or a position-dependent divergent force field (DF), which resulted in unstable trajectories. With practice, subjects learned to compensate for the perturbations produced by both force fields. Adaptation was characterized by an initial increase in the activation of all muscles followed by a gradual reduction. The time course of the increase in activation was correlated with a reduction in hand-path error for the DF but not for the VF. Adaptation to the VF could have been achieved solely by formation of an inverse dynamics model and adaptation to the DF solely by impedance control. However, indices of learning, such as hand-path error, joint torque, and electromyographic activation and deactivation suggest that the CNS combined these processes during adaptation to both force fields. Our results suggest that during the early phase of learning there is an increase in endpoint stiffness that serves to reduce hand-path error and provides additional stability, regardless of whether the dynamics are stable or unstable. We suggest that the motor control system utilizes an inverse dynamics model to learn the mean dynamics and an impedance controller to assist in the formation of the inverse dynamics model and to generate needed stability.
Resumo:
To explore the neural mechanisms related to representation of the manipulation dynamics of objects, we performed whole-brain fMRI while subjects balanced an object in stable and highly unstable states and while they balanced a rigid object and a flexible object in the same unstable state, in all cases without vision. In this way, we varied the extent to which an internal model of the manipulation dynamics was required in the moment-to-moment control of the object's orientation. We hypothesized that activity in primary motor cortex would reflect the amount of muscle activation under each condition. In contrast, we hypothesized that cerebellar activity would be more strongly related to the stability and complexity of the manipulation dynamics because the cerebellum has been implicated in internal model-based control. As hypothesized, the dynamics-related activation of the cerebellum was quite different from that of the primary motor cortex. Changes in cerebellar activity were much greater than would have been predicted from differences in muscle activation when the stability and complexity of the manipulation dynamics were contrasted. On the other hand, the activity of the primary motor cortex more closely resembled the mean motor output necessary to execute the task. We also discovered a small region near the anterior edge of the ipsilateral (right) inferior parietal lobule where activity was modulated with the complexity of the manipulation dynamics. We suggest that this is related to imagining the location and motion of an object with complex manipulation dynamics.
Resumo:
Recent studies examining adaptation to unexpected changes in the mechanical environment highlight the use of position error in the adaptation process. However, force information is also available. In this chapter, we examine adaptation processes in three separate studies where the mechanical environment was changed intermittently. We compare the expected consequences of using position error and force information in the changes to motor commands following a change in the mechanical environment. In general, our results support the use of position error over force information and are consistent with current computational models of motor learning. However, in situations where the change in the mechanical environment eliminates position error the central nervous system does not necessarily respond as would be predicted by these models. We suggest that it is necessary to take into account the statistics of prior experience to account for our observations. Another deficiency in these models is the absence of a mechanism for modulating limb mechanical impedance during adaptation. We propose a relatively simple computational model based on reflex responses to perturbations which is capable of accounting for iterative changes in temporal patterns of muscle co-activation.