935 resultados para Carcinoembryonic antigen
Resumo:
Background: To directly assess tumor oxygenation in resectable non - small cell lung cancers (NSCLC) and to correlate tumor pO2 and the selected gene and protein expression to treatment outcomes. Methods: Twenty patients with resectable NSCLC were enrolled. Intraoperative measurements of normal lung and tumor pO2 were done with the Eppendorf polarographic electrode. All patients had plasma osteopontin measurements by ELISA. Carbonic anhydrase-IX (CA IX) staining of tumor sections was done in the majority of patients (n = 16), as was gene expression profiling (n = 12) using cDNA microarrays. Tumor pO2 was correlated with CA IX staining, osteopontin levels, and treatment outcomes. Results: The median tumor pO2 ranged from 0.7 to 46 mm Hg (median, 16.6) and was lower than normal lung pO2 in all but one patient. Because both variables were affected by the completeness of lung deflation during measurement, we used the ratio of tumor/normal lung (T/L) pO2 as a reflection of tumor oxygenation. The median T/L pO 2 was 0.13. T/L pO2 correlated significantly with plasma osteopontin levels (r = 0.53, P = 0.02) and CA IX expression (P = 0.006). Gene expression profiling showed that high CD44 expression was a predictor for relapse, which was confirmed by tissue staining of CD44 variant 6 protein. Other variables associated with the risk of relapse were T stage (P = 0.02), T/L pO2 (P = 0.04), and osteopontin levels (P = 0.001). Conclusions: Tumor hypoxia exists in resectable NSCLC and is associated with elevated expression of osteopontin and CA IX. Tumor hypoxia and elevated osteopontin levels and CD44 expression correlated with poor prognosis. A larger study is needed to confirm the prognostic significance of these factors. © 2006 American Association for Cancer Research.
Resumo:
Purpose: To identify a 15-KDa novel hypoxia-induced secreted protein in head and neck squamous cell carcinomas (HNSCC) and to determine its role in malignant progression. Methods: We used surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and tandem MS to identify a novel hypoxia-induced secreted protein in FaDu cells. We used immunoblots, real-time polymerase chain reaction (PCR), and enzyme-linked immunoabsorbent assay to confirm the hypoxic induction of this secreted protein as galectin-1 in cell lines and xenografts. We stained tumor tissues from 101 HNSCC patients for galectin-1, CA IX (carbonic anhydrase IX, a hypoxia marker) and CDS (a T-cell marker). Expression of these markers was correlated to each other and to treatment outcomes. Results: SELDI-TOF studies yielded a hypoxia-induced peak at 15 kDa that proved to be galectin-1 by MS analysis. Immunoblots and PCR studies confirmed increased galectin-1 expression by hypoxia in several cancer cell lines. Plasma levels of galectin-1 were higher in tumor-bearing severe combined immunodeficiency (SCID) mice breathing 10% O 2 compared with mice breathing room air. In HNSCC patients, there was a significant correlation between galectin-1 and CA IX staining (P = .01) and a strong inverse correlation between galectin-1 and CDS staining (P = .01). Expression of galectin-1 and CDS were significant predictors for overall survival on multivariate analysis. Conclusion: Galectin-1 is a novel hypoxia-regulated protein and a prognostic marker in HNSCC. This study presents a new mechanism on how hypoxia can affect the malignant progression and therapeutic response of solid tumors by regulating the secretion of proteins that modulate immune privilege. © 2005 by American Society of Clinical Oncology.
Resumo:
Objective To evaluate the efficacy and toxicity of Oxaliplatin and 5-Fluorouracil (5-FU)/Leucovorin (LV) combination in ovarian cancer relapsing within 2 years of prior platinum-based chemotherapy in a phase II trial. Methods Eligible patients had at least one prior platinum-based chemotherapy regimen, elevated CA-125 ≥ 60 IU/l, radiological evidence of disease progression and adequate hepatic, renal and bone marrow function. Patients with raised CA-125 levels alone as marker of disease relapse were not eligible. Oxaliplatin (85 mg/m 2) was given on day 1, and 5-Fluorouracil (370 mg/m 2) and Leucovorin (30 mg) was given on days 1 and 8 of a 14-day cycle. Results Twenty-seven patients were enrolled. The median age was 57 years (range 42-74 years). The median platinum-free interval (PFI) was 5 months (range 0-17 months) with only 30% of patients being platinum sensitive (PFI > 6 months). Six patients (22%) had two prior regimens of chemotherapy. A total of 191 cycles were administered (median 7; range 2-12). All patients were evaluable for toxicity. The following grade 3/4 toxicities were noted: anemia 4%; neutropenia 15%; thrombocytopenia 11%; neurotoxicity 8%; lethargy 4%; diarrhea 4%; hypokalemia 11%; hypomagnesemia 11%. Among 27 enrolled patients, 20 patients were evaluable for response by WHO criteria and 25 patients were evaluable by Rustin's CA-125 criteria. The overall response rate (RR) by WHO criteria was 30% (95% CI: 15- 52) [three complete responses (CRs) and three partial responses (PRs)]. The CA-125 response rate was 56% (95% CI: 37-73). Significantly, a 25% (95% CI: 9-53) radiological and a 50% (95% CI: 28-72) CA-125 response rate were noted in platinum resistant patients (PFI < 6 months). The median response duration was 4 months (range 3-12) and the median overall survival was 10 months. Conclusion Oxaliplatin and 5-Fluorouracil/ Leucovorin combination has a good safety profile and is active in platinum-pretreated advanced epithelial ovarian cancer. © 2004 Elsevier Inc. All rights reserved.
Resumo:
The epidermal growth factor receptor (EGFR) is commonly expressed in non-small-cell lung cancer (NSCLC) and promotes a host of mechanisms involved in tumorigenesis. However, EGFR expression does not reliably predict prognosis or response to EGFR-targeted therapies. The data from two previous studies of a series of 181 consecutive surgically resected stage I-IIIA NSCLC patients who had survived in excess of 60 days were explored. Of these patients, tissue was available for evaluation of EGFR in 179 patients, carbonic anhydrase (CA) IX in 177 patients and matrix metalloproteinase-9 (MMP-9) in 169 patients. We have previously reported an association between EGFR expression and MMP-9 expression. We have also reported that MMP-9 (P=0.001) and perinuclear (p)CA IX (P=0.03) but not EGFR expression were associated with a poor prognosis. Perinuclear CA IX expression was also associated with EGFR expression (P<0.001). Multivariate analysis demonstrated that coexpression of MMP-9 with EGFR conferred a worse prognosis than the expression of MMP-9 alone (P<0.001) and coexpression of EGFR and pCA IX conferred a worse prognosis than pCA IX alone (P=0.05). A model was then developed where the study population was divided into three groups: group 1 had expression of EGFR without coexpression of MMP-9 or pCA IX (number=21); group 2 had no expression of EGFR (number=75); and group 3 had coexpression of EGFR with pCA IX or MMP-9 or both (number=70). Group 3 had a worse prognosis than either groups 1 or 2 (P=0.0003 and 0.027, respectively) and group 1 had a better prognosis than group 2 (P=0.036). These data identify two cohorts of EGFR-positive patients with diametrically opposite prognoses. The group expressing either EGFR and or both MMP-9 and pCA IX may identify a group of patients with activated EGFR, which is of clinical relevance with the advent of EGFR-targeted therapies. © 2004 Cancer Research UK.
Resumo:
Purpose To evaluate carbonic anhydrase (CA) IX as a surrogate marker of hypoxia and investigate the prognostic significance of different patterns of expression in non-small-cell lung cancer (NSCLC). Methods Standard immunohistochemical techniques were used to study CA IX expression in 175 resected NSCLC tumors. CA IX expression was determined by Western blotting in A549 cell lines grown under normoxic and hypoxic conditions. Measurements from microvessels to CA IX positivity were obtained. Results CA IX immunostaining was detected in 81.8% of patients. Membranous (m) (P = .005), cytoplasmic (c) (P = .018), and stromal (P < .001) CA IX expression correlated with the extent of tumor necrosis (TN). The mean distance from vascular endothelium to the start of tumor cell positivity was 90 μm, which equates to an oxygen pressure of 5.77 mmHg. The distance to blood vessels from individual tumor cells or tumor cell clusters was greater if they expressed mCA IX than if they did not (P < .001). Hypoxic exposure of A549 cells for 16 hours enhanced CAIX expression in the nuclear and cytosolic extracts. Perinuclear (p) CA IX (P = .035) was associated with a poor prognosis. In multivariate analysis, pCA IX (P = .004), stage (P = .001), platelet count (P = .011), sex (P = .027), and TN (P = .035) were independent poor prognostic factors. Conclusion These results add weight to the contention that mCA IX is a marker of tumor cell hypoxia. The absence of CA IX staining close to microvessels suggests that these vessels are functionally active. pCA IX expression is representative of an aggressive phenotype. © 2003 by American Society of Clinical Oncology.
Resumo:
The complete nucleotide sequence of the genome segment 5 (S5) of a Thai isolate of rice ragged stunt virus (RRSV) was determined. The 2682 nucleotide sequence contains a single long open reading frame capable of encoding a polypeptide with a molecular mass of ~91 kDa. Polypeptides encoded by various truncated cDNAs of S5 were expressed using the pGEX fusion protein vector and the highest level of fusion protein was obtained from a construct encoding a hydrophilic region of S5 protein. Antibodies raised against this fusion protein recognized a minor polypeptide, with a molecular mass of ~ 91 kDa, that was present in purified preparations of RRSV particles, infected insect vectors and infected rice plants. This indicates that RRSV S5 encodes a minor structural protein. Comparing the RRSV S5 sequence with sequences of other reo-viruses did not reveal any significant sequence similarities.
Resumo:
Subterranean clover stunt disease is an economically important aphid-borne virus disease affecting certain pasture and grain legumes in Australia. The virus associated with the disease, subterranean clover stunt virus (SCSV), was previously found to be representative of a new type of single-stranded DNA virus. Analysis of the virion DNA and restriction mapping of double-stranded cDNA synthesized from virion DNA suggested that SCSV has a segmented genome composed of 3 or 4 different species of circular ssDNA each of about 850-880 nucleotides. To further investigate the complexity of the SCSV genome, we have isolated the replicative form DNA from infected pea and from it prepared putative full-length clones representing the SCSV genome segments. Analysis of these clones by restriction mapping indicated that clones representing at least 4 distinct genomic segments were obtained. This method is thus suitable for generating an extensive genomic library of novel ssDNA viruses containing multiple genome segments such as SCSV and banana bunchy top virus. The N-terminal amino acid sequence and amino acid composition of the coat protein of SCSV were determined. Comparison of the amino acid sequence with partial DNA sequence data, and the distinctly different restriction maps obtained for the full-length clones suggested that only one of these clones contained the coat protein gene. The results confirmed that SCSV has a functionally divided genome composed of several distinct ssDNA circles each of about 1 kb.
Resumo:
Oral immunization is attractive as a delivery route because it is needle-free and useful for rapid mass vaccination programs to target pandemics or bioterrorism. This potential has not been realized for human vaccination, due to the requirement of large antigen doses and toxic (to humans) adjuvants to overcome the induction of oral tolerance and potential degradation of antigens in the stomach. To date, only oral vaccines based on live attenuated organisms have been approved for human use. In this study we describe the use of a lipid-based delivery system/adjuvant, Lipid C, for oral immunization to protect mice against genital tract chlamydial infection. Lipid C is formulated from food-grade purified and fractionated triglycerides. Bacterial shedding following vaginal challenge with Chlamydia muridarum was reduced by 50% in female mice orally immunized with the chlamydial major outer membrane protein (MOMP) formulated in Lipid C, protection equivalent to that seen in animals immunized with MOMP admixed with both cholera toxin (CT) and CpG oligodeoxynucleotides (CpG-ODN). Protection was further enhanced when MOMP, CT and CpG were all combined in the Lipid C matrix. Protection correlated with production of gamma interferon (IFN) by splenic T cells, a serum MOMP-specific IgG response and low but detectable levels of MOMP-specific IgA in vaginal lavage.
Resumo:
Bcl-x(l) and Bax play important roles in the regulation of apoptosis. This study investigated the involvement of the mitochondrial death pathway and the role of Bcl-x(l) and Bax in the escape from apoptosis after prolonged serum deprivation in Madin-Darby canine kidney (MDCK) cells. Low level apoptosis and basal activity of the mitochondrial death pathway were detectable in normal cell growth. In serum deprivation, mitosis was partially suppressed, and the mitochondrial activity was stimulated. The level of apoptosis continuously rose over 48 h. This rise was concomitant with the increasing presence of cytochrome c in cytosol. However, both apoptosis and cytosolic cytochrome c fell dramatically at 72 h. Elevation of whole cell Bcl-x(l) and redistribution of Bcl-x(l) protein from cytosol to the membrane at 48 h and 72 h was observed. Redistribution of Bax protein from the membrane to cytosol occurred at 24 h, and remained steady to 72 h. Bax/Bcl-x(l) coimmunoprecipitation by anti-Bax antibody showed reduced Bax/Bcl-x(l) interaction at the membrane at 72 h, but not at 24 or 48 h. These results suggest that apoptosis upon serum withdrawal results from the leakage of cytochrome c to cytosol. Amelioration of the leakage of cytochrome c and apoptosis requires not only the increase of Bcl-x(l)/Bax ratio, but also the release of Bcl-x(l) from Bax at the membrane.
Resumo:
Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.
Resumo:
Antibodies can play a protective but non-essential role in natural chlamydial infections dependent on antigen specificity and antibody isotype. IgG is the dominant antibody in both male and female reproductive tract mucosal secretions, and is bi-directionally trafficked across epithelia by the neonatal Fc receptor (FcRn). Using physiologically relevant pH-polarized epididymal epithelia grown on Transwells®, IgG specifically targeting an extracellular chlamydial antigen; the Major Outer Membrane Protein (MOMP), enhanced uptake and translocation of infection at pH 6-6.5 but not at neutral pH. This was dependent on FcRn expression. Conversely, FcRn-mediated transport of IgG targeting the intracellular chlamydial inclusion membrane protein A (IncA), induced aberrant inclusion morphology, recruited autophagic proteins independent of lysosomes, and significantly reduced infection. Challenge of female mice with MOMP-specific IgG-opsonized C. muridarum delayed infection clearance but exacerbated oviduct occlusion. In male mice, MOMP-IgG elicited by immunization afforded no protection against testicular chlamydial infection, whereas; the transcytosis of IncA-IgG significantly reduced testicular chlamydial burden. Together these data show that the protective and pathological effects of IgG are dependent on FcRn-mediated transport as well as the specificity of IgG for intracellular or extracellular antigens.
Immunity against a Chlamydia infection and disease may be determined by a balance of IL-17 signaling
Resumo:
Most vaccines developed against Chlamydia using animal models provide partial protection against a genital tract infection. However, protection against the oviduct pathology associated with infertility is highly variable and often has no defining immunological correlate. When comparing two adjuvants (CTA1-DD and a combination of Cholera toxin plus CpG- oligodeoxynucleotide–CT/CpG) combined with the chlamydial major outer membrane protein (MOMP) antigen and delivered via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, we identified two vaccine groups with contrasting outcomes following infection. SL immunization with MOMP/CTA1-DD induced a 70% reduction in the incidence of oviduct pathology, without significantly altering the course of infection. Conversely, IN immunization with MOMP/CT/CpG prevented an ascending infection, but not the oviduct pathology. This anomaly presented a unique opportunity to study the mechanisms by which vaccines can prevent oviduct pathology, other than by controlling the infection. The IL-17 signaling in the oviducts was found to associate with both the enhancement of immunity to infection and the development of oviduct pathology. This conflicting role of IL-17 may provide some explanation for the discordance in protection between infection and disease and suggests that controlling immunopathology, as opposed to the rapid eradication of the infection, may be essential for an effective human chlamydial vaccine that prevents infertility.
Resumo:
Chlamydia pneumoniae is responsible for up to 20% of community acquired pneumonia and can exacerbate chronic inflammatory diseases. As the majority of infections are either mild or asymptomatic, a vaccine is recognized to have the greatest potential to reduce infection and disease prevalence. Using the C. muridarum mouse model of infection, we immunized animals via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, with recombinant chlamydial major outer membrane protein (MOMP) combined with adjuvants CTA1-DD or a combination of cholera toxin/CpG-oligodeoxynucleotide (CT/CpG). Vaccinated animals were challenged IN with C. muridarum and protection against infection and pathology was assessed. SL and TC immunization with MOMP and CT/CpG was the most protective, significantly reducing chlamydial burden in the lungs and preventing weight loss, which was similar to the protection induced by a previous live infection. Unlike a previous infection however, these vaccinations also provided almost complete protection against fibrotic scarring in the lungs. Protection against infection was associated with antigen-specific production of IFNγ, TNFα and IL-17 by splenocytes, however, protection against both infection and pathology required the induction of a similar pro-inflammatory response in the respiratory tract draining lymph nodes. Interestingly, we also identified two contrasting vaccinations capable of preventing infection or pathology individually. Animals IN immunized with MOMP and either adjuvant were protected from infection, but not the pathology. Conversely, animals TC immunized with MOMP and CTA1-DD were protected from pathology, even though the chlamydial burden in this group was equivalent to the unimmunized controls. This suggests that the development of pathology following an IN infection of vaccinated animals was independent of bacterial load and may have been driven instead by the adaptive immune response generated following immunization. This identifies a disconnection between the control of infection and the development of pathology, which may influence the design of future vaccines.
Resumo:
The standard method of labelling proliferating cells uses the thymidine analogue, bromodeoxyuridine (BrdU), which incorporates into the DNA during S-phase of the cell cycle. A disadvantage of this method is that the immunochemical processing requires pre-treatment of the cells and tissue with heat or acid to reveal the antigen. This pre-treatment reduces reliability of the method and degrades the specimen, reducing the ability for multiple immuno-fluorescence labelling at high resolution. We report here the utility of a novel thymidine analogue, ethynyl deoxyuridine (EdU), detected with a fluorescent azide via the “click” chemistry reaction (the Huisgen 1,3-dipolar cycloaddition reaction of an organic azide to a terminal acetylene). The detection of EdU requires no heat or acid treatment and the incorporated EdU is covalently conjugated to fluorescent probe. The reaction is quick and compatible with fluorescence immunochemistry and other fluorescent probes. We show here that EdU is non-toxic in vitro and in vivo and can be used in place of BrdU to label cells during neurogenesis and the progeny identified at least 30 days later. The fluorescent labelling of EdU, markedly improves the detection of proliferating cells and allows concurrent high resolution fluorescence immunochemistry.