981 resultados para Carbon black
Resumo:
Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.
Resumo:
One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.
Resumo:
The interesting properties of thermoplastics elastomers can be combined with carbon nanotubes (CNT) for the development of large strain piezoresistive composites for sensor applications. Piezoresistive properties of the composites depend on CNT content, with the gauge factor increasing for concentrations around the percolation threshold, mechanical and electrical hysteresis. The SBS copolymer composition (butadiene/styrene ratio) influences the mechanical and electrical hysteresis of composites and, therefore, the piezoresistive response. This work reports on the electrical and mechanical response of CNT/SBS composites with 4%wt nanofiller content, due to the larger electromechanical response. C401 and C540 SBS copolymers with 80% and 60% butadiene content, respectively have been selected. The copolymer with larger amount of soft phase (C401) shows a rubber-like mechanical behavior, with mechanical hysteresis increasing linearly with strain until 100% strain. The copolymer with the larger amount of hard phase (C540) just shows rubber-like behavior for low strains. The piezoresistive sensibility is similar for both composites for low strains, with a GF≈ 5 for 5% strain. The electrical hysteresis shows opposite behavior than the mechanical hysteresis, increasing with strain for both composites, but with higher increase for softer copolymer, C401. The GF increases with increasing strain, but this increase is larger for composites with lower amounts of soft phase due to the distinct initial modulus and deformation of the soft and hard phases of the copolymer. The soft phase shows larger strain under a given stress than the harder phase and the conductive pathway rearrangements in the composites are different for both phases, the harder copolymer (C540) showing higher piezoresistive sensibility, GF≈ 18, for 20% strain.
Resumo:
Thermoplastic elastomers based on a triblock copolymer styrene-butadiene-styrene (SBS) with different butadiene/styrene ratios, block structure and carbon nanotube (CNT) content were submitted to accelerated weathering in a Xenontest set up, in order to evaluate their stability to UV ageing. It was concluded that ageing mainly depends on butadiene/styrene ratio and block structure, with radial block structures exhibiting a faster ageing than linear block structures. Moreover, the presence of carbon nanotubes in the SBS copolymer slows down the ageing of the copolymer. The evaluation of the influence of ageing on the mechanical and electrical properties demonstrates that the mechanical degradation is higher for the C401 sample, which is the SBS sample with the largest butadiene content and a radial block structure. On the other hand, a copolymer derivate from SBS, the styrene-ethylene/butadiene-styrene (SEBS) sample, retains a maximum deformation of ~1000% after 80 h of accelerated ageing. The hydrophobicity of the samples decreases with increasing ageing time, the effect being larger for the samples with higher butadiene content. It is also verified that cytotoxicity increases with increasing UV ageing with the exception of SEBS, which remains not cytotoxic up to 80 h of accelerated ageing time, demonstrating its potential for applications involving exposition to environmental conditions.
Resumo:
Thermodynamic stability of black holes, described by the Rényi formula as equilibrium compatible entropy function, is investigated. It is shown that within this approach, asymptotically flat, Schwarzschild black holes can be in stable equilibrium with thermal radiation at a fixed temperature. This implies that the canonical ensemble exists just like in anti-de Sitter space, and nonextensive effects can stabilize the black holes in a very similar way as it is done by the gravitational potential of an anti-de Sitter space. Furthermore, it is also shown that a Hawking–Page-like black hole phase transition occurs at a critical temperature which depends on the q-parameter of the Rényi formula.
Resumo:
The authors also acknowledge Centre for Textile Science and Technology (University of Minho) and FIBRENAMICS PLATFORMfor providing required conditions for this research. Sincere thanks are also due to Mr. Pedro Samuel Leite and Mr. Carlos Jesus for their kind help in sample preparation and testing.
Resumo:
Construction sector is one of the major responsible for energy consumption and carbon emissions and renovation of existing buildings plays an important role in the actions to mitigate climate changes. Present work is based on the methodology developed in IEA Annex 56, allowing identifying cost optimal and cost effective renovation scenarios improving the energy performance. The analysed case study is a residential neighbourhood of the municipality of Gaia in Portugal. The analysis compares a reference renovation scenario (without improving the energy performance of the building) with a series of alternative renovation scenarios, including the one that is being implemented.
Resumo:
Building sector has become an important target for carbon emissions reduction, energy consumption and resources depletion. Due to low rates of replacement of the existing buildings, their low energy performances are a major concern. Most of the current regulations are focused on new buildings and do not account with the several technical, functional and economic constraints that have to be faced in the renovation of existing buildings. Thus, a new methodology is proposed to be used in the decision making process for energy related building renovation, allowing finding a cost-effective balance between energy consumption, carbon emissions and overall added value.
Resumo:
Tese de Doutoramento Engenharia Mecânica
Resumo:
Concrete is the primary construction material for civil infrastructures and generally consists of cement, coarse aggregates, sand, admixtures and water. Cementitious materials are characterized by quasi-brittle behaviour and susceptible to cracking [1]. The cracking process within concrete begins with isolated nano-cracks, which then conjoin to form micro-cracks and in turn macro-cracks. Formation and growth of cracks lead to loss of mechanical performance with time and also make concrete accessible to water and other degrading agents such as CO2, chlorides, sulfates, etc. leading to strength loss and corrosion of steel rebars. To improve brittleness of concrete, reinforcements such as polymeric as well as glass and carbon fibers have been used and microfibers improved the mechanical properties significantly by delaying (but could not stop) the transformation of micro-cracks into macro forms [2]. This fact encouraged the use of nano-sized fillers in concrete to prevent the growth of nano-cracks transforming in to micro and macro forms. Nanoparticles like SiO2, Fe2O3, and TiO2 led to considerable improvement in mechanical performance and moreover, nano-TiO2 helped to remove organic pollutants from concrete surfaces [3].
Resumo:
The genus Actinella Lewis was studied using planktonic samples from a black water floodplain lake in Central Amazon region. For species identification the taxa were morphological and morphometricaly analyzed on base in light microscope (LM) and scanning electronic microscope (SEM). Five species were registered: Actinella brasiliensis Grunow, A. guianensis Grunow, A. gracile Kociolek, A. mirabilis (Eulenstein ex Grunow) Grunow and A. robusta Hustedt. A. gracile is reported for the first time for Amazon State and black water systems and it is firstly documented with SEM. In addition, a review of geographic distribution of Actinella species in Brazilian Amazon region is given.
Resumo:
We provide a comparative analysis of how short-run variations in carbon and energy prices relate to each other in the emerging greenhouse gas market in California (Western Climate Initiative [WCI], and the European Union Emission Trading Scheme [EU ETS]). We characterize the relationship between carbon, gas, coal, electricity and gasoline prices and an indicator for economic activity, and present a first analysis of carbon prices in the WCI. We also provide a comparative analysis of the structures of the two markets. We estimate a vector autoregressive model and the impulse--response functions. Our main findings show a positive impact from a carbon shock toward electricity, in both markets, but larger in the WCI electricity price, indicating more efficiency. We propose that the widening of carbon market sectors, namely fuels transport and electricity imports, may contribute to this result. To conclude, the research shows significant and coherent relations between variables in WCI, which demonstrate some degree of success for a first year in operation. Reversely, the EU ETS should complete its intended market reform, to allow for more impact of the carbon price. Finally, in both markets, there is no evidence of carbon pricing depleting economic activity.
Resumo:
We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.
Resumo:
Dissertação de mestrado em Genética Molecular