939 resultados para Canning and preserving
Resumo:
The risk of adverse psychological outcomes in adult victims of childhood and adolescent sexual abuse (CSA) has been documented; however, research on possible mediating variables is still required, namely with a clinical perspective. The attachment literature suggests that secure interpersonal relationships may represent such a variable. Twenty-eight women who had experienced episodes of CSA, and 16 control women, were interviewed using Bremner's Early Trauma Inventory and the DSM-IV Global Assessment of Functioning; they also responded to Collins' Relationship Scales Questionnaire, evaluating adult attachment representations in terms of Closeness, Dependence and Anxiety. Subjects with an experience of severe abuse reported significantly more interpersonal distance in relationships (low index of Closeness) than other subjects. The index of psychopathological functioning was correlated with both the severity of abuse and attachment (low index of Closeness). Regression analysis on the sample of abused women revealed that attachment predicted psychopathology when abuse was controlled for, whereas abuse did not predict psychopathology when attachment was controlled for. Therefore, preserving a capacity for closeness with attachment figures in adulthood appears to mediate the consequences of CSA on subsequent psychopathological outcome.
Resumo:
Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patient's quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE(-/-) mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre-ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis-linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro-inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High-energy phosphate metabolism remained unchanged (31-Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.
Resumo:
In the celebration of the Oswaldo Cruz Institute centenary, we wanted to stress our concern with the relationship between two of its missions: research and education. What are the educational bases required for science and technology activities on health sciences for the future years? How can scientists collaborate to promote the popularization of academic knowledge and to improve a basic education for citizenship in an ethic and humanistic view? In this article we pointed out to need of commitment, even in the biomedical post-graduation level, of a more integrated philosophy that would be centered on health education, assuming health as a dynamic biological and social equilibrium and emphasizing the need of scientific popularization of science in a cooperative construction way, instead of direct transfer of knowledge, preserving also macro views of health problems in the development of very specific studies. The contemporary explosion of knowledge, particularly biological knowledge, imposes a need of continuous education to face the growing illiteracy. In order to face this challenge, we think that the Oswaldo Cruz Institute honors his dialectic profile of tradition and transformation, always creating new perspectives to disseminate scientific culture in innovated forms.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la University of Groningen, Holanda, entre 2007 i 2009. La simulació directa de la turbulència (DNS) és una eina clau dins de la mecànica de fluids computacional. Per una banda permet conèixer millor la física de la turbulència i per l'altra els resultats obtinguts són claus per el desenvolupament dels models de turbulència. No obstant, el DNS no és una tècnica vàlida per a la gran majoria d'aplicacions industrials degut al elevats costos computacionals. Per tant, és necessari cert grau de modelització de la turbulència. En aquest context, s'han introduïts importants millores basades en la modelització del terme convectiu (no lineal) emprant symmetry-preserving regularizations. En tracta de modificar adequadament el terme convectiu a fi de reduir la producció d'escales més i més petites (vortex-stretching) tot mantenint tots els invariants de les equacions originals. Fins ara, aquest models s'han emprat amb èxit per nombres de Rayleigh (Ra) relativament elevats. En aquest punt, disposar de resultats DNS per a configuracions més complexes i nombres de Ra més elevats és clau. En aquest contexte, s'han dut a terme simulacions DNS en el supercomputador MareNostrum d'una Differentially Heated Cavity amb Ra=1e11 i Pr=0.71 durant el primer any dels dos que consta el projecte. A més a més, s'ha adaptat el codi a fi de poder simular el fluxe al voltant d'un cub sobre una pared amb Re=10000. Aquestes simulacions DNS són les més grans fetes fins ara per aquestes configuracions i la seva correcta modelització és un gran repte degut la complexitat dels fluxes. Aquestes noves simulacions DNS estan aportant nous coneixements a la física de la turbulència i aportant resultats indispensables per al progrés de les modelitzacións tipus symmetry-preserving regularization.
Resumo:
Positive Montenegro's skin test is a delayed type hypersensitivity reaction widely used as indicative of previous infection with Leishmania in both humans and dogs. Montenegro's antigen consists of a crude Leishmania antigen solution, usually containing thimerosal as preserving agent. In this work it is shown that a large proportion of dogs (11 out of 56) examined in an endemic area of leishmaniasis presented induration at the site of injection of a diluent containing thimerosal alone. This clearly demonstrates that thimerosal leads to a high number of false positive skin reactions in dogs and that its use in Montenegro's skin test antigenic preparations should be avoided.
Resumo:
Recrystallization rims are a common feature of zircon crystals that underwent metamorphism. We present a microstructural and microchemical study of partially recrystallized zircon grains collected in polymetamorphic migmatites (Valle d'Arbedo, Ticino, Switzerland). The rims are bright in cathodo-luminescence (CL), with sharp and convex contacts characterized by inward-penetrating embayments transgressing igneous zircon cores. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and transmission electron microscopy (TEM) imaging indicate that the rims are chemically and microstructurally different from the cores. The rims are strongly depleted in REE, with concentrations up to two orders of magnitude lower than in the cores, indicating a significant loss of REE during zircon recrystallization. Enrichment in non-formula elements, such as Ca, has not been observed in the rims. The microstructure of zircon cores shows a dappled intensity at and below the 100 nm scale, possibly due to radiation damage. Other defects such as pores and dislocations are absent in the core except at healed cracks. Zircon rims are mostly dapple-free, but contain nanoscale pores and strain centers, interpreted as fluid inclusions and chemical residues, respectively. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages show that the recrystallization of the rims took place >200 Ma ago when the parent igneous zircon was not metamict. The chemical composition and the low-Ti content of the rims indicate that they form at sub-solidus temperatures (550-650 degrees C). Recrystallization rims in Valle d'Arbedo zircon are interpreted as the result of the migration of chemical reaction fronts in which fluid triggered in situ and contemporaneous interface-coupled dissolution-reprecipitation mechanisms. This study indicates that strong lattice strain resulting from the incorporation of a large amount of impurities and structural defects is not a necessary condition for zircon to recrystallize. Our observations suggest that the early formation of recrystallization rims played a major role in preserving zircon from the more recent Alpine metamorphic overprint.
Resumo:
Machado-Joseph disease or spinocerebellar ataxia type 3, the most common dominantly-inherited spinocerebellar ataxia, results from translation of the polyglutamine-expanded and aggregation prone ataxin 3 protein. Clinical manifestations include cerebellar ataxia and pyramidal signs and there is no therapy to delay disease progression. Beclin 1, an autophagy-related protein and essential gene for cell survival, is decreased in several neurodegenerative disorders. This study aimed at evaluating if lentiviral-mediated beclin 1 overexpression would rescue motor and neuropathological impairments when administered to pre- and post-symptomatic lentiviral-based and transgenic mouse models of Machado-Joseph disease. Beclin 1-mediated significant improvements in motor coordination, balance and gait with beclin 1-treated mice equilibrating longer periods in the Rotarod and presenting longer and narrower footprints. Furthermore, in agreement with the improvements observed in motor function beclin 1 overexpression prevented neuronal dysfunction and neurodegeneration, decreasing formation of polyglutamine-expanded aggregates, preserving Purkinje cell arborization and immunoreactivity for neuronal markers. These data show that overexpression of beclin 1 in the mouse cerebellum is able to rescue and hinder the progression of motor deficits when administered to pre- and post-symptomatic stages of the disease.
Resumo:
Intravenous administration of polyclonal and monoclonal antibodies has proven to be a clinically valid approach in the treatment, or at least relief, of many acute and chronic pathologies, such as infection, immunodeficiency, and a broad range of autoimmune conditions. Plasma-derived IgG or recombinant IgG are most frequently used for intravenous or subcutaneous administration, whereas a few IgM-based products are available as well. We have established recently that secretory-like IgA and IgM can be produced upon association of plasma-derived polymeric IgA and IgM with a recombinant secretory component. As a next step toward potential future mucosal administration, we sought to unravel the mechanisms by which these secretory Igs protect epithelial cells located at the interface between the environment and the inside of the body. By using polarized epithelial Caco-2 cell monolayers and Shigella flexneri as a model enteropathogen, we found that polyspecific plasma-derived SIgA and SIgM fulfill many protective functions, including dose-dependent recognition of the antigen via formation of aggregated immune complexes, reduction of bacterial infectivity, maintenance of epithelial cell integrity, and inhibition of proinflammatory cytokine/chemokine production by epithelial cells. In this in vitro model devoid of other cellular or molecular interfering partners, IgM and secretory IgM showed stronger bacterial neutralization than secretory IgA. Together, these data suggest that mucosally delivered antibody preparations may be most effective when combining both secretory-like IgA and IgM, which, together, play a crucial role in preserving several levels of epithelial cell integrity.
Resumo:
Résumé : L'insuline est produite et sécrétée par la cellule ß-pancréatique. Son rôle est de régler le taux de sucre dans le sang. Si ces cellules meurent ou échouent à produire suffisamment de l'insuline, les sujets développent le diabète de type 2 (DT2), une des maladies les plus communes dans les pays développés. L'excès chronique des lipoprotéines LDL oxydés (oxLDL) et/ou des cytokines pro-inflammatoires comme l'interleukine-1ß (IL-1ß) participent au dérèglement et à la mort des cellules ß. Nous avons montré qu'une chute des niveaux d'expression de la protéine nommée «mitogen activated protein kinase 8 interacting protein 1» ou «islet brain 1 (IB 1)» est en partie responsable des effets provoqués par les oxLDL ou IL-1ß. IB1 régule l'expression de l'insuline et la survie cellulaire en inhibant la voie de signalisation « c-jun N-terminal Kinase (JNK)». La réduction des niveaux d'expression d'IB1 provoque l'activation de la voie JNK en réponse aux facteurs environnementaux, et ainsi initie la réduction de l'expression de l'insuline et l'induction du programme de mort cellulaire. Les mimétiques de l'hormone "Glucagon-like peptide 1", tel que l'exendin-4 (ex-4), sont une nouvelle classe d'agents hypoglycémiants utilisés dans le traitement du DT2. Les effets bénéfiques de l'ex-4 sont en partie accomplis en préservant l'expression de l'insuline et la survie des cellules ß contre les stress associés au DT2. La restauration des niveaux d'expression d'IB1 est un des mécanismes par lequel l'ex-4 prodigue son effet sur la cellule. En effet, cette molécule stimule l'activité du promoteur du gène et ainsi compense la réduction du contenu en IB1 causée par le stress. Outre ce rôle anti-apoptotique, dans ce travail de thèse nous avons mis en évidence une autre fonction d'IB1 dans la cellule ß. La réduction de l'activité ou des niveaux d'expression d'IB1 induisent une réduction importante de la sécrétion de l'insuline en réponse au glucose. Le mécanisme par lequel IB1 régule la sécrétion de l'insuline implique à la fois le métabolisme du glucose et éventuellement le transport vésiculaire en contrôlant l'expression de la protéine annexin A2. En résumé, IB 1 est une molécule clé à travers laquelle l'environnement du diabétique pourrait exercer un effet délétère sur la cellule ß. L'amélioration de l'activité d'IB1 et/ou de son expression devrait être considérée dans les approches thérapeutiques futures visant à limiter la perte des cellules ß dans le diabète. Abstract : ß-cells of the pancreatic islets of Langerhans produce and secrete insulin when blood glucose rises. In turn, insulin ensures that plasma glucose concentrations return within a relatively narrow physiological range. If ß-cells die or fail to produce enough insulin, individuals develop one of the most common diseases in Western countries, namely type 2 diabetes (T2D). Chronic excess of oxidized low density lipoproteins (oxLDL) and/or pro-inflammatory cytokines such as interleukin 1-ß (IL-1ß) contribute to decline of ß-cells and thereby are thought to accelerate progression of the disease overtime. We showed that profound reduction in the levels of the mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) causes ß-cell failure accomplished by oxLDL or IL-1 ß. IB1 regulates insulin expression and cell survivals by inhibiting the c-Jun N-terminal Kinase pathway. Diminution in IB 1 levels leads to an increase in activation of the JNK pathway induced by environmental stressors, and thus initiates loss of insulin expression and programmed cell death. The mimetic agents of the glucoincretin glucagon-like peptide 1 such as exendin-4 (ex-4) are new class of hypoglycaemic medicines for treatment of T2D. The beneficial property is in part achieved by preserving insulin expression and ß-cell survival against stressors related to diabetes. Restored levels in IB 1 account for the cytoprotective effect of the ex-4. In fact, the latter molecule .stimulates the promoter activity of the gene and thus compensates loss of IB1 content triggered by stress. Beside of the anti-apoptotic role, an additional leading function for IB 1 in ß-cells was highlighted in this thesis. Impairment in IB1 activity or silencing of the gene in ß-cells revealed a major reduction in insulin secretion elicited by glucose. The mechanisms whereby IB 1 couples glucose to insulin release involve glucose metabolism and potentially, vesicles trafficking by maintaining the levels of annexin A2. IB 1 is therefore a key molecule through which environmental factors related to diabetes may exert harmful effects on ß-cells. Improvement in IB 1 activity and/or expression should be considered as a target for therapeutic purpose.
Resumo:
Amantadine is an antiviral and antiparkinsonian drug that has been evaluated in combination therapies against hepatitis C virus (HCV) infection. Controversial results have been reported concerning its efficacy, and its mechanism of action remains unclear. Data obtained in vitro suggested a role of amantadine in inhibiting HCV p7-mediated cation conductance. In keeping with the fact that mitochondria are responsible to ionic fluxes and that HCV infection impairs mitochondrial function, we investigated a potential role of amantadine in modulating mitochondrial function. Using a well-characterized inducible cell line expressing the full-length HCV polyprotein, we found that amantadine not only prevented but also rescued HCV protein-mediated mitochondrial dysfunction. Specifically, amantadine corrected (i) overload of mitochondrial Ca(2+); (ii) inhibition of respiratory chain activity and oxidative phosphorylation; (iii) reduction of membrane potential; and (iv) overproduction of reactive oxygen species. The effects of amantadine were observed within 15 min following drug administration and confirmed in Huh-7.5 cells transfected with an infectious HCV genome. These effects were also observed in cells expressing subgenomic HCV constructs, indicating that they are not mediated or only in part mediated by p7. Single organelle analyzes carried out on isolated mouse liver mitochondria demonstrated that amantadine induces hyperpolarization of the membrane potential. Moreover, amantadine treatment increased the calcium threshold required to trigger mitochondrial permeability transition opening. In conclusion, these results support a role of amantadine in preserving cellular bioenergetics and redox homeostasis in HCV-infected cells and unveil an effect of the drug which might be exploited for a broader therapeutic utilization.
Resumo:
There is a general consensus that during chronic Trypanosoma cruzi infection, the host immune system induces complex processes to ensure the control of parasite growth while preserving the potential to mount and maintain a life-long controlled humoral and cellular immune response against the invading pathogen. This review summarises evidence in an attempt to elucidate "what must be understood" to further clarify the role of innate immunity in the development/maintenance of clinical Chagas disease and the impact of etiological treatment on host immunity, highlighting the contributions of the innate immunity and regulatory T (Treg) cells. Recently, increasing focus on innate immunity suggest that chronic T. cruzi infection may cause morbidity when innate effector functions, or the down-regulation of adaptive regulatory mechanisms are lacking. In this context, stable asymptomatic host-parasite interactions seem to be influenced by the effector/regulatory balance with the participation of macrophages, natural killer (NK) and CD8+ T cells in parallel with the establishment of regulatory mechanisms mediated by NKT and Treg cells. Moreover, a balanced innate immune activation state, apart from Treg cells, may play a role in controlling the adverse events triggered by the massive antigen release induced by trypanosomicidal agents during Chagas disease etiological treatment.
Resumo:
For decades thimerosal has been used as a preservative in the candidate vaccine for cutaneous leishmaniasis, which was developed by Mayrink et al. The use of thimerosal in humans has been banned due to its mercury content. This study addresses the standardization of phenol as a new candidate vaccine preservative. We have found that the proteolytic activity was abolished when the test was conducted using the candidate vaccine added to merthiolate (MtVac) as well as to phenol (PhVac). The Montenegro's skin test conversion rates induced by MtVac and by PhVac was 68.06% and 85.9%, respectively, and these values were statistically significant (p < 0.05). The proliferative response of peripheral mononuclear blood cells shows that the stimulation index of mice immunized with both candidate vaccines was higher than the one in control animals (p < 0.05). The ability of the candidate vaccines to induce protection in C57BL/10 mice against a challenge with infective Leishmania amazonensis promastigotes was tested and the mice immunized with PhVac developed smaller lesions than the mice immunized with MtVac. Electrophoresis of phenol-preserved antigen revealed a number of proteins, which were better preserved in PhVac. These results do in fact encourage the use of phenol for preserving the immunogenic and biochemical properties of the candidate vaccine for cutaneous leishmaniasis.
Resumo:
AIMS/HYPOTHESIS: In insulin-secreting cells, activation of the c-Jun NH(2)-terminal kinase (JNK) pathway triggers apoptosis. Whereas JNK1 and JNK2 are ubiquitously produced, JNK3 has been described exclusively in neurons. This report aims to characterise the expression and role in apoptosis of the three JNK isoforms in insulin-secreting cells exposed to cytokines. METHODS: Sections of human and mouse pancreases were used for immunohistochemistry studies with isoform-specific anti-JNK antibodies. Human, pig, mouse and rat pancreatic islets were isolated by enzymatic digestion and RNA or protein extracts were prepared. RNA and protein levels were determined by quantitative RT-PCR and western blotting respectively, using JNK-isoform-specific primers and isoform-specific antibodies; activities of the three JNK isoforms were determined by kinase assays following quantitative immunoprecipitation/depletion of JNK3. JNK silencing was performed with small interfering RNAs and apoptotic rates were determined in INS-1E cells by scoring cells displaying pycnotic nuclei. RESULTS: JNK3 and JNK2 mRNAs are the predominant isoforms expressed in human pancreatic islets. JNK3 is nuclear while JNK2 is also cytoplasmic. In INS-1E cells, JNK3 knockdown increases c-Jun levels and caspase-3 cleavage and sensitises cells to cytokine-induced apoptosis; in contrast, JNK1 or JNK2 knockdown is protective. CONCLUSIONS/INTERPRETATION: In insulin-secreting cells, JNK3 plays an active role in preserving pancreatic beta cell mass from cytokine attacks. The specific localisation of JNK3 in the nucleus, its recruitment by cytokines, and its effects on key transcription factors such as c-Jun, indicate that JNK3 is certainly an important player in the transcriptional control of genes expressed in insulin-secreting cells.
Resumo:
Summary : Antigen-specific T lymphocytes constantly patrol the body to search for invading pathogens. Given the large external and internal body surfaces that need to be surveyed, a sophisticated strategy is necessary to facilitate encounters between T cells and pathogens. Dendritic cells present at all body surfaces are specialized in capturing pathogens and bringing them to T zones of secondary lymphoid organs, such as the lymph nodes and the spleen. Here, dendritic cells present antigenic fragments and activate the rare antigen-specific T lymphocytes. This induction of an immune response is facilitated in multiple ways by a dense network of poorly characterized stromal cells, termed fibroblastic reticular cells (FRCs). They constitutively produce the chemokines CCL21 and CCL19, which attract naïve T cells and dendritic cells into the T zone. Further, they provide an adhesion scaffold for dendritic cells and a migration scaffold for naïve T cells, allowing efficient screening of dendritic cell by thousands of T cells. FRCs also form a system of microchannels (conduits) that allows rapid transport of antigen or cytokines from the subcapsular sinus to the T zone. We characterized lymph node FRCS by flow cytometry, immunofluorescence microscopy, real time PCR and functional assays and could show that FRCs are a unique type of myofibroblasts which produce the T cell survival factor IL-7. This function was shown to be critically involved in regulating the size of the peripheral T cell pool and further demonstrates the importance of FRCs in maintaining immunocompetence. As we observed that some dendritic cells also express the receptor for IL-7, we expected a similar function of IL-7 in their survival. Surprisingly, we found no role for IL-7 in their survival but in their development. Analysis of hematopoietic precursors suggested that part of the dendritic cell pool develops out of an IL-7 dependent precursor, which maybe shared with lymphocytes. During the induction of an immune response, lymph node homeostasis is drastically altered when the lymph node expands several-fold in size to accommodate many more lymphocytes. Here, we describe that this expansion of the T zone is accompanied by the activation and proliferation of FRCs thereby preserving T zone architecture and function. This expansion of the FRC network is regulated by antigen-independent and -dependent events. It demonstrates the incredible plasticity of this organ allowing clonal expansion of antigen-specific lymphocytes. Résumé : Les lymphocytes T, spécifiques pour un antigène particulier, patrouillent constamment le corps à la recherche de l'invasion de pathogène. A cause des grandes surfaces externes et internes du corps, une stratégie sophistiquée est nécessaire afin de faciliter les rencontres entre les cellules T et les agents pathogènes. Les cellules dendritiques présentes dans toutes les surfaces du corps sont spécialisées dans la capture des agents pathogènes et dans le transport vers les zones T des organes lymphoïdes secondaires, comme les ganglions lymphatiques et la rate. Dans ces organes, les cellules dendritiques présentent les fragments antigéniques et activent les lymphocytes T rares. L'induction de cette réponse immunitaire est facilitée de différentes manières par un réseau dense de cellules strornales mal caractérisé, appelées 'fibroblastic reticular tells' (FRCs). FRCs produisent constitutivement les chimiokines CCL21 et CCL19, qui attirent les lymphocytes T naïfs et les cellules dendritiques vers la zone T. En outre, elles donnent une base d'adhérence pour les cellules dendritiques et elles attirent les cellules T naïves vers les cellules dendritiques. Les FRCs forment des petits canaux (ou conduits) qui permettent le transport rapide d'antigènes solubles ou de cytokines vers la zone T. Nous avons caractérisé les FRCs par cytométrie en flux, immunofluorescence et par PCR en temps réel et nous avons démontré que les FRCs sont un type unique de rnyofibroblastes qui produisent un facteur de survie des cellules T, l'Interleukine-7. Il a été démontré que cette fonction est cruciale afin d'augmenter la taille et la diversité du répertoire de cellules T, et ainsi, maintenir l'immunocompétence. Comme nous avons observé que certaines cellules dendritiques expriment également le récepteur de l'IL-7, nous avons testé une fonction similaire dans leur survie. Étonnamment, nous n'avons pas trouvé de rôle pour l'IL-7 dans leur survie, mais dans leur développement. L'analyse des précurseurs hématopoïétiques a suggéré qu'une fraction des cellules dendritiques se développe à partir des précurseurs dépendants de l'IL-7, qui sont probablement partagés avec les lymphocytes. Au cours de l'induction d'une réponse immunitaire, l'homéostasie du ganglion lymphatique est considérablement modifiée. En effet, sa taille augmente considérablement afin d'accueillir un plus grand nombre de lymphocytes. Nous décrivons ici que cet élargissement de la zone T est accompagné par l'activation et 1a prolifération des FRCs, préservant l'architecture et la fonction de la zone T. Cette expansion du réseau des FRCs est régie par des évènements à la fois dépendants et indépendants de l'antigène. Cela montre l'incroyable plasticité de cet organe qui permet l'expansion clonale des lymphocytes T spécifiques.
Resumo:
The biological and therapeutic responses to hyperthermia, when it is envisaged as an anti-tumor treatment modality, are complex and variable. Heat delivery plays a critical role and is counteracted by more or less efficient body cooling, which is largely mediated by blood flow. In the case of magnetically mediated modality, the delivery of the magnetic particles, most often superparamagnetic iron oxide nanoparticles (SPIONs), is also critically involved. We focus here on the magnetic characterization of two injectable formulations able to gel in situ and entrap silica microparticles embedding SPIONs. These formulations have previously shown suitable syringeability and intratumoral distribution in vivo. The first formulation is based on alginate, and the second on a poly(ethylene-co-vinyl alcohol) (EVAL). Here we investigated the magnetic properties and heating capacities in an alternating magnetic field (141 kHz, 12 mT) for implants with increasing concentrations of magnetic microparticles. We found that the magnetic properties of the magnetic microparticles were preserved using the formulation and in the wet implant at 37 degrees C, as in vivo. Using two orthogonal methods, a common SLP (20 Wg(-1)) was found after weighting by magnetic microparticle fraction, suggesting that both formulations are able to properly carry the magnetic microparticles in situ while preserving their magnetic properties and heating capacities. (C) 2010 Elsevier B.V. All rights reserved.