943 resultados para CULTURED FIBROBLASTS
Resumo:
A qualidade de luz pode alterar a morfogênese das plantas por meio de uma série de processos mediados por receptores de luz, principalmente na região do vermelho e azul. O objetivo do presente estudo foi verificar alterações anatômicas foliares e características biométricas de Cattleya loddigesii 'Tipo', cultivadas in vitro, sob diferentes malhas coloridas com nível de radiação de 50% de sombreamento. Plântulas oriundas de autopolinização e sementes germinadas in vitro, com aproximadamente 1,0cm de comprimento e com raízes, foram inoculadas em meio WPM e submetidas a diferentes condições de incubação. Testou-se o efeito de sombrites coloridos (vermelho e azul) sobre os frascos cultivados em casa de vegetação (CV) e sala de crescimento (SC), além dos tratamentos, nos dois ambientes, sem utilização das telas coloridas. A avaliação foi efetuada 180 dias após inoculação. Com os resultados obtidos, observou-se que o ambiente de cultivo promove alterações anatômicas e biométricas em plântulas de Cattleya loddigesii 'Tipo' micropropagadas. As alterações promovidas pelo cultivo em luz natural evidenciam maior capacidade fotossintética, por meio de maior diferenciação dos tecidos clorofilianos, promovendo uma superfície foliar anatomicamente adaptada à fase de aclimatização.
Resumo:
In lymphocytes (LY), the well-documented antiproliferative effects of IFN-alpha are associated with inhibition of protein synthesis, decreased amino acid incorporation, and cell cycle arrest. However, the effects of this cytokine on the metabolism of glucose and glutamine in these cells have not been well investigated. Thus, mesenteric and spleen LY of male Wistar rats were cultured in the presence or absence of IFN-alpha, and the changes on glucose and glutamine metabolisms were investigated. The reduced proliferation of mesenteric LY was accompanied by a reduction in glucose total consumption (35%), aerobic glucose metabolism (55%), maximal activity of glucose-6-phosphate dehydrogenase (49%), citrate synthase activity (34%), total glutamine consumption (30%), aerobic glutamine consumption (20.3%) and glutaminase activity (56%). In LY isolated from spleen, IFN alpha also reduced the proliferation and impaired metabolism. These data demonstrate that in LY, the antiproliferative effects of IFN alpha are associated with a reduction in glucose and glutamine metabolisms.
Resumo:
The objective of the present study was to determine the effects of trans-10, cis-12 conjugated linoleic acid (CLA) in adipose tissue explant cultures of growing pigs on the following responses: lipogenesis (measured as rate of C-14-labeled glucose incorporation over a subsequent 2-h incubation in the presence or absence of insulin), lipolysis (release of non-esterified fatty acid over a 2-h incubation in the presence or absence of isoproterenol), activities of lipogenic enzymes, and mRNA abundance of fatty acid synthase (FAS). Adipose tissue explants from nine growing pigs (78 +/- 3 kg) were cultured in 199 medium with insulin, dexamethasone and antibiotics for 4, 12, 24, and 48 h. The treatments were 1) control: 100 mu M polyvinyl alcohol (PVA); 2) pGH: 100 ng/mL porcine growth hormone (pGH) plus 100 mu M PVA; 3) CLA200: 200 mu M trans-10, cis-12 CLA; 4) CLA50: 50 mu M trans-10, cis-12 CLA, and 5) LA: 200 mu M linoleic acid. Fatty acids were added along with PVA (2: 1), respectively, for 24 h. Explants were collected after each culture period and assayed for lipogenesis. Transcripts of FAS mRNA were quantified by real-time RT-PCR after 24 and 48 h. Lipolysis and activities of FAS, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and NADP-malate dehydrogenase were determined after 48 h. As expected, glucose incorporation was decreased (P < 0.05) in response to pGH treatment (positive control). LA had no effect on any parameter evaluated. Treatment with trans-10, cis-12 CLA decreased FAS activity (P < 0.05), but NADPH-generating enzymes were unaffected by treatments. Consistent with reduction in FAS activity, both lipid synthesis and FAS mRNA abundance were reduced with chronic CLA treatment, pGH increased baseline and stimulated lipolysis (P < 0.05) after 48 h of culture, while CLA treatment had no effect on non-esterified fatty acid release. Results of this study showed that trans-10, cis-12 CLA alters lipogenesis but has no effect on lipolysis in cultures of pig adipose tissue.
Resumo:
Purpose: Use of lipid nanoemulsions as carriers of drugs for therapeutic or diagnostic purposes has been increasingly studied. Here, it was tested whether modifications of core particle constitution could affect the characteristics and biologic properties of lipid nanoemulsions. Methods: Three nanoemulsions were prepared using cholesteryl oleate, cholesteryl stearate, or cholesteryl linoleate as main core constituents. Particle size, stability, pH, peroxidation of the nanoemulsions, and cell survival and uptake by different cell lines were evaluated. Results: It was shown that cholesteryl stearate nanoemulsions had the greatest particle size and all three nanoemulsions were stable during the 237-day observation period. The pH of the three nanoemulsion preparations tended to decrease over time, but the decrease in pH of cholesteryl stearate was smaller than that of cholesteryl oleate and cholesteryl linoleate. Lipoperoxidation was greater in cholesteryl linoleate than in cholesteryl oleate and cholesteryl stearate. After four hours' incubation of human umbilical vein endothelial cells (HUVEC) with nanoemulsions, peroxidation was minimal in the presence of cholesteryl oleate and more pronounced with cholesteryl linoleate and cholesteryl stearate. In contrast, macrophage incubates showed the highest peroxidation rates with cholesteryl oleate. Cholesteryl linoleate induced the highest cell peroxidation rates, except in macrophages. Uptake of cholesteryl oleate nanoemulsion by HUVEC and fibroblasts was greater than that of cholesteryl linoleate and cholesteryl stearate. Uptake of the three nanoemulsions by monocytes was equal. Uptake of cholesteryl oleate and cholesteryl linoleate by macrophages was negligible, but macrophage uptake of cholesteryl stearate was higher. In H292 tumor cells, cholesteryl oleate showed the highest uptakes. HUVEC showed higher survival rates when incubated with cholesteryl stearate and smaller survival with cholesteryl linoleate. H292 survival was greater with cholesteryl stearate. Conclusion: Although all three nanoemulsion types were stable for a long period, considerable differences were observed in size, oxidation status, and cell survival and nanoemulsion uptake in all tested cell lines. Those differences may be helpful in protocol planning and interpretation of data from experiments with lipid nanoemulsions.
Resumo:
Background and Aims: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.
Resumo:
Aspergillus fumigatus is a common mould whose spores are a component of the normal airborne flora. Immune dysfunction permits developmental growth of inhaled spores in the human lung causing aspergillosis, a significant threat to human health in the form of allergic, and life-threatening invasive infections. The success of A. fumigatus as a pathogen is unique among close phylogenetic relatives and is poorly characterised at the molecular level. Recent genome sequencing of several Aspergillus species provides an exceptional opportunity to analyse fungal virulence attributes within a genomic and evolutionary context. To identify genes preferentially expressed during adaptation to the mammalian host niche, we generated multiple gene expression profiles from minute samplings of A. fumigatus germlings during initiation of murine infection. They reveal a highly co-ordinated A. fumigatus gene expression programme, governing metabolic and physiological adaptation, which allows the organism to prosper within the mammalian niche. As functions of phylogenetic conservation and genetic locus, 28% and 30%, respectively, of the A. fumigatus subtelomeric and lineage-specific gene repertoires are induced relative to laboratory culture, and physically clustered genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses are a prominent feature. Locationally biased A. fumigatus gene expression is not prompted by in vitro iron limitation, acid, alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression is favoured following ex vivo neutrophil exposure and in comparative analyses of richly and poorly nourished laboratory cultured germlings. We found remarkable concordance between the A. fumigatus host-adaptation transcriptome and those resulting from in vitro iron depletion, alkaline shift, nitrogen starvation and loss of the methyltransferase LaeA. This first transcriptional snapshot of a fungal genome during initiation of mammalian infection provides the global perspective required to direct much-needed diagnostic and therapeutic strategies and reveals genome organisation and subtelomeric diversity as potential driving forces in the evolution of pathogenicity in the genus Aspergillus.
Resumo:
The use of microalgae as live food to a wide variety of organisms is one of the most important aspects in aquaculture. Several commercial formulations have been available in the marine aquarium market in order to prepare artificial sea water (ASW). The present study accounted microalgae Chaetoceros calcitrans performance cultured using different ASW in comparison to natural seawater(NSW). it was carried out using red Sea, Coralife and oceanic, three different ASW brands and NSW as control. nonaerated cultures were grew in 400 mL with Conwy culture medium with five replicates each under defined conditions. All cultures began with an algal inoculum of 208.000 cells/mL. a 5-mL aliquot was removed daily from each culture for cells counts. data obtained using polynomial regression test demonstrated that all ASW brands reached higher algal density rates than the one with NSW, though the three ASW brands were significantly heterogeneous. C. calcitrans raised with oceanic and red Sea brands showed similar growth rates and both were higher than Coralife brand. the results suggest that all three ASW brands studied can be used in the culture of this microalgae specie.
Resumo:
A meso-tetrakis(pentafluorophenyl)-chlorin with the reduced pyrrole ring linked to an isoxazolidine ring (FC) has been conjugated to four beta-cyclodextrins (CDFC). The CDFC exhibits excellent water solubility and is a potent photosensitizer towards proliferating NCTC 2544 human keratinocytes. The study by conventional steady state absorption and fluorescence spectroscopies and by time-resolved femto- and nanosecond laser flash spectroscopies suggests that in ethanol and pH 7 buffer the beta-cyclodextrins embed the highly hydrophobic tetrakis(pentafluorophenyl)-chlorin macrocycle and strongly interact with the chlorin rings in the singlet and triplet manifolds. In these solvents, femtosecond spectroscopy suggests that the conjugate undergoes a rapid relaxation in the upper excited singlet states induced by photochemical and/or conformation change(s) at a rate of about 5 ps(-1) to fluorescent states whose lifetime is similar to 8 ns. This interaction is destroyed upon addition of Triton X100 to buffer. Both FC and CDFC strongly fluoresce (Phi(F) similar to 0.5) in micelles. Similar behavior is observed at the triplet level. In ethanol and water, the initial transient triplet state absorbance decays within 1-3 mu s yielding a longer lived triplet with spectral properties indistinguishable from that of original difference absorbance spectra. The determination of the molar absorbance in the 440-460 nm region (similar to 35 000 M(-1) cm(-1)) leads to an estimate of similar to 0.2 for the triplet formation quantum yield of FC in toluene and of FC and CDFC in Triton X100 micelles. Quenching of the CDFC triplets by dioxygen in buffer produces (1)O(2) in a good yield consistent with the effective photocytotoxicity of the chlorin-cyclodextrins conjugate towards cultured NCTC 2544 human keratinocytes. By contrast, FC which aggregates in buffer produces little if any (1)O(2).
Resumo:
Background: Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods: Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology) and pattern 4 (aglandular) sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype) and LuCaP 49 (neuroendocrine/small cell carcinoma) grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results: Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like) grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions: Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.
Resumo:
Background: The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THYI. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment. Methods: Prostate CD90(+) stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder. Results: The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes. Conclusion: CD90(+) prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development.
Resumo:
Background: The development and progression of cancer depend on its genetic characteristics as well as on the interactions with its microenvironment. Understanding these interactions may contribute to diagnostic and prognostic evaluations and to the development of new cancer therapies. Aiming to investigate potential mechanisms by which the tumor microenvironment might contribute to a cancer phenotype, we evaluated soluble paracrine factors produced by stromal and neoplastic cells which may influence proliferation and gene and protein expression. Methods: The study was carried out on the epithelial cancer cell line (Hep-2) and fibroblasts isolated from a primary oral cancer. We combined a conditioned-medium technique with subtraction hybridization approach, quantitative PCR and proteomics, in order to evaluate gene and protein expression influenced by soluble paracrine factors produced by stromal and neoplastic cells. Results: We observed that conditioned medium from fibroblast cultures (FCM) inhibited proliferation and induced apoptosis in Hep-2 cells. In neoplastic cells, 41 genes and 5 proteins exhibited changes in expression levels in response to FCM and, in fibroblasts, 17 genes and 2 proteins showed down-regulation in response to conditioned medium from Hep-2 cells (HCM). Nine genes were selected and the expression results of 6 down-regulated genes (ARID4A, CALR, GNB2L1, RNF10, SQSTM1, USP9X) were validated by real time PCR. Conclusions: A significant and common denominator in the results was the potential induction of signaling changes associated with immune or inflammatory response in the absence of a specific protein.
Resumo:
Background: Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results: Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 10(7) recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions: This study indicates that immunoisolation devices containing endostatin-expressing cells are effective for the inhibition of the growth of melanoma and Ehrlich tumors. Macroencapsulation of engineered cells is therefore a reliable platform for the refinement of innovative therapeutic strategies against tumors.
Resumo:
Objective: This study aims to investigate the effects of low-level laser therapy (LLLT) on muscle regeneration. For this purpose, the anterior tibialis muscle of 48 male Wistar rats received AlGaInP laser treatment (785 nm) after surgically-induced injury. Background Data: Few studies have been conducted on the effects of LLLT on muscle regeneration at different irradiation doses. Materials and Methods: The animals were randomized into four groups: uninjured rats (UN); uninjured and laser-irradiated rats (ULI); injured rats (IN); and injured and laser-irradiated rats (ILI). The direct contact laser treatment was started 24 h after surgery. An AlGaInP diode laser emitting 75 mW of continuous power at 785 nm was used for irradiation. The laser probe was placed at three treatment points to deliver 0.9 J per point, for a total dose of 2.7 J per treatment session. The animals were euthanized after treatment sessions 1, 2, and 4. Mounted sections were stained with hematoxylin and eosin and used for quantitative morphological analysis, in which the number of leukocytes and fibroblasts were counted over an area of 4480 mu m(2). The data were statistically analyzed by analysis of variance (ANOVA) and the Bonferroni t-test. Results: Quantitative data showed that the number of both polymorphonuclear and mononuclear leukocytes in the inflammatory infiltrate at the injury site was smaller in the ILI(1), ILI(2), and ILI(4) subgroups compared with their respective control subgroups (IN(1), IN(2), and IN(4)) for sessions 1, 2, and 4, respectively (p < 0.05). On the other hand, the number of fibroblasts increased after the fourth treatment session (p < 0.05). With regard to the regeneration of muscle fibers following injury, only after the fourth treatment session was it possible to find muscle precursor cells such as myoblasts and some myotubes in the ILI(4) subgroup. Conclusion: During the acute inflammatory phase, the AlGaInP laser treatment was found to have anti-inflammatory effects, reducing the number of leukocytes at the injury site and accelerating the regeneration of connective tissue.
Resumo:
Purpose: To evaluate the effects of Triesence (R) (TRI), a new preservative-free triamcinolone approved by the U. S. Food and Drug Administration (FDA) for intraocular use, on human retina pigment epithelial (ARPE-19) and rat neurosensory (R28) cells in culture. Methods: ARPE-19 and R28 cell cultures were treated 24 h with 1,000, 500, 200, or 100 mu g/mL of crystalline (cTRI) or 1,000, 500, or 200 mu g/mL of solubilized (sTRI). TRI was solubilized by centrifuging the drug, discarding the supernatant containing the vehicle and then resuspending the drug pellet in an equivalent amount of Dimethyl sulfoxide to achieve the same concentration as the commercial preparation. Percentage of cell viability (CV) was evaluated by a trypan blue dye-exclusion assay. The mitochondrial membrane potential (Delta Psi m) was analyzed with the JC-1 assay. The caspase-3/7 activity was measured by a fluorochrome assay. Results: In the ARPE-19 cultures, the cTRI caused a decrease in CV at 1,000 mg/mL (13.03 +/- 6.51; P < 0.001), 500 mu g/mL (28.87 +/- 9.3; P < 0.001), 200 mu g/mL (54.93 +/- 5.61; P < 0.001), and 100 mu g/mL (82.53 +/- 0.65; P < 0.005) compared with the untreated controls (96.98 +/- 0.16). In R28 cultures, the cTRI treatment also reduced CV values significantly (P < 0.001) for the 1,000 mu g/mL (22.73 +/- 2.44), 500 mu g/mL (34.63 +/- 1.91), 200 mu g/mL (58.70 +/- 1.39), and 100 mu g/m (75.33 +/- 2.47) compared with the untreated controls (86.08 +/- 3.54). Once the TRI was solubilized (sTRI), the CV and Delta Psi m remained similar to the untreated controls for both ARPE-19 and R28 cells. The sTRI treatment with 1,000, 500, and 200 mu g/mL increased in caspase-3/7 activity in ARPE-19 cells (P < 0.01) and in R28 cells (P < 0.05) compared with dimethyl sulfoxide equivalent controls. Conclusion: The crystalline form of TRI (cTRI) can cause a significant decrease in CV to cultured retinal cells. Once the TRI is solubilized (sTRI), at the same concentrations, the cells remain viable with no decrease in CV or Delta Psi m. The sTRI can, however, increase caspase-3/7 activity, thus suggesting some degree of apoptosis.
Resumo:
Objectives: To analyze the effects of low-level laser therapy (LLLT), 670 nm, with doses of 4 and 7 J/cm(2), on the repair of surgical wounds covered by occlusive dressings. Background Data: The effect of LLLT on the healing process of covered wounds is not well defined. Materials and Methods: For the histologic analysis with HE staining, 50 male Wistar rats were submitted to surgical incisions and divided into 10 groups (n=5): control; stimulated with 4 and 7 J/cm(2) daily, for 7 and 14 days, with or without occlusion. Reepithelization and the number of leukocytes, fibroblasts, and fibrocytes were obtained with an image processor. For the biomechanical analysis, 25 rats were submitted to a surgical incision and divided into five groups (n=5): treated for 14 days with and without occlusive dressing, and the sham group. Samples of the lesions were collected and submitted to the tensile test. One-way analysis of variance was performed, followed by post hoc analysis. A Tukey test was used on the biomechanical data, and the Tamhane test on the histologic data. A significance level of 5% was chosen (p <= 0.05). Results: The 4 and 7J/cm(2) laser with and without occlusive dressing did not alter significantly the reepithelization rate of the wounds. The 7 J/cm(2) laser reduced the number of leukocytes significantly. The number of fibroblasts was higher in the groups treated with laser for 7 days, and was significant in the covered 4 J/cm(2) laser group. Conclusions: Greater interference of the laser-treatment procedure was noted with 7 days of stimulation, and the occlusive dressing did not alter its biostimulatory effects.