915 resultados para CRYSTALLINE POLYMER BLENDS
Resumo:
Diverse morphologies of multidimensional hierarchical single-crystalline ZnO nanoarchitectures including nanoflowers, nanobelts, and nanowires are obtained by use of a simple thermal evaporation and vapour-phase transport deposition technique by placing Au-coated silicon substrates in different positions inside a furnace at process temperatures as low as 550 °C. The nucleation and growth of ZnO nanostructures are governed by the vapour–solid mechanism, as opposed to the commonly reported vapour–liquid–solid mechanism, when gold is used in the process. The morphological, structural, compositional and optical properties of the synthesized ZnO nanostructures can be effectively tailored by means of the experimental parameters, and these properties are closely related to the local growth temperature and gas-phase supersaturation at the sample position. In particular, room-temperature photoluminescence measurements reveal an intense near-band-edge ultraviolet emission at about 386 nm for nanobelts and nanoflowers, which suggests that these nanostructures are of sufficient quality for applications in, for example, optoelectronic devices.
Resumo:
Sub-oxide-to-metallic highly-crystalline nanowires with uniformly distributed nanopores in the 3 nm range have been synthesized by a unique combination of the plasma oxidation, re-deposition and electron-beam reduction. Electron beam exposure-controlled oxide → sub-oxide → metal transition is explained using a non-equilibrium model.
Resumo:
We report the catalyst-free synthesis of the arrays of core–shell, ultrathin, size-uniform SiC/AlSiC nanowires on the top of a periodic anodic aluminum oxide template. The nanowires were grown using an environmentally friendly, silane-free process by exposing the silicon supported porous alumina template to CH4 + H2 plasmas. High-resolution scanning and transmission electron microscopy studies revealed that the nanowires have a single-crystalline core with a diameter of about 10 nm and a thin (1–2 nm) amorphous AlSiC shell. Because of their remarkable length, high aspect ratio, and very high surface area-to-volume ratio, these unique structures are promising for nanoelectronic and nanophotonic applications that require efficient electron emission, light scattering, etc. A mechanism for nanowire growth is proposed based upon the reduction of the alumina template to nanosized metallic aluminum droplets forming between nanopores. The subsequent incorporation of silicon and carbon atoms from the plasma leads to nucleation and growth from the top of the alumina template.
Resumo:
Synthesis of one-dimensional AlN nanostructures commonly requires high process temperatures (>900 °C), metal catalyst, and hazardous gas/powder precursors. We report on a simple, single-step, catalyst-free, plasma-assisted growth of dense patterns of size-uniform single-crystalline AlN nanorods at a low substrate temperature (∼650 °C) without any catalyst or hazardous precursors. This unusual growth mechanism is based on highly effective plasma dissociation of N2 molecules, localized species precipitation on AlN islands, and reduced diffusion on the nitrogen-rich surface. This approach can also be used to produce other high-aspect-ratio oxide and nitride nanostructures for applications in energy conversion, sensing, and optoelectronics. © 2010 American Institute of Physics.
Resumo:
A mechanism and model for the vertical growth of platelet-structured vertically aligned single-crystalline carbon nanostructures by the formation of graphene layers on a flat top surface are proposed and verified experimentally. It is demonstrated that plasma-related effects lead to self-sharpening of tapered nanocones to form needlelike nanostructures, in a good agreement with the predicted dependence of the radius of a nanocone's flat top on the incoming ion flux and surface temperature. The growth mechanism is relevant to a broad class of nanostructures including nanotips, nanoneedles, and nanowires and can be used to improve the predictability of nanofabrication processes. © 2007 American Institute of Physics.
Resumo:
An innovative approach to precise tailoring of surface density, shapes, and sizes of single-crystalline α-Fe 2O 3 nanowires and nanobelts by controlling interactions of reactive oxygen plasma-generated species with the Fe surface is proposed. This strongly nonequilibrium, rapid, almost incubation-free, high-rate growth directly from the solid-solid interface can also be applied to other oxide materials and is based on deterministic control of the density of oxygen species and the surface conditions, which determine the nanostructure nucleation and growth.
Resumo:
This contribution is focused on plasma-enhanced chemical vapor deposition systems and their unique features that make them particularly attractive for nanofabrication of flat panel display microemitter arrays based on ordered patterns of single-crystalline carbon nanotip structures. The fundamentals of the plasma-based nanofabrication of carbon nanotips and some other important nanofilms and nanostructures are examined. Specific features, challenges, and potential benefits of using the plasma-based systems for relevant nanofabrication processes are analyzed within the framework of the "plasma-building unit" approach that builds up on extensive experimental data on plasma diagnostics and nanofilm/nanostructure characterization, and numerical simulation of the species composition in the ionized gas phase (multicomponent fluid models), ion dynamics and interaction with ordered carbon nanotip patterns, and ab initio computations of chemical structure of single crystalline carbon nanotips. This generic approach is also applicable for nanoscale assembly of various carbon nanostructures, semiconductor quantum dot structures, and nano-crystalline bioceramics. Special attention is paid to most efficient control strategies of the main plasma-generated building units both in the ionized gas phase and on nanostructured deposition surfaces. The issues of tailoring the reactive plasma environments and development of versatile plasma nanofabrication facilities are also discussed.
Resumo:
Nanoparticle manipulation by various plasma forces in near-substrate areas of the Integrated Plasma-Aided Nanofabrication Facility (IPANF) is investigated. In the IPANF, high-density plasmas of low-temperature rf glow discharges are sustained. The model near-substrate area includes a variable-length pre-sheath, where a negatively charged nanoparticle is accelerated, and a self-consistent collisionless sheath with a repulsive electrostatic potential. Conditions enabling the nanoparticle to overcome the repulsive barrier and deposit onto the substrate are investigated numerically and experimentally. Under certain conditions the momentum gained by the nanoparticle in the pre-sheath area appears to be sufficient for the driving ion drag force to outbalance the repulsive electrostatic and thermophoretic forces. Numerical results are applied for the explanation of size-selective nanoparticle deposition in the Ar+H2+CH4 plasma-assisted chemical vapor deposition of various carbon nanostructure patterns for electron field emitters and are cross-referenced by the field emission scanning electron microscopy. It is shown that the nanoparticles can be efficiently manipulated by the temperature gradient-controlled thermophoretic force. Experimentally, the temperature gradients in the near-substrate areas are measured in situ by means of the temperature gradient probe and related to the nanofilm fabrication conditions. The results are relevant to plasma-assisted synthesis of numerous nanofilms employing structural incorporation of the plasma-grown nanoparticles, including but not limited to nanofabrication of ordered single-crystalline carbon nanotip arrays for electron field emission applications.
Resumo:
Rapid, simple, catalyst-free, room-temperature sonochemical fabrication of long (up to 30 mm), ultra-thin (about 20 nm), crystalline gold nanowires on nanoporous anodic alumina membranes is reported. It is demonstrated that the nanowires nucleate and grow inside the nanosized pores and then form a dense network on the bottom side of the membrane. A growth mechanism is proposed based on the formation of through channels in the Al2O3 membrane by sonochemical etching, followed by nanowire nucleation in the channels and their further extrusion out of the pores by acoustic cavitation. This process can be used for the fabrication of metal nanowires with highly controllable diameter and density, suitable for numerous applications such as nanoelectronic, nanofluidic, and optoelectronic components and devices.
Resumo:
This project was a preliminary step towards the development of novel methods for early stage cancer diagnosis and treatment. Diagnostic imaging agents with high Raman signal enhancement were developed based on tailored assemblies of gold nanoparticles, which demonstrated potential for non-invasive detection from deep under the skin surface. Specifically designed polymers were employed to assemble gold nanoparticles into controlled morphologies including dimers, nanochains, nanoplates, globular and core-satellite nanostructures. Our findings suggest that the Raman enhancement is strongly dependent on assembly morphology and can be tuned to adapt to the requirements of the diagnostic agent.
Resumo:
The applications of organic semiconductors in complex circuitry such as printed CMOS-like logic circuits demand miniaturization of the active structures to the submicrometric and nanoscale level while enhancing or at least preserving the charge transport properties upon processing. Here, we addressed this issue by using a wet lithographic technique, which exploits and enhances the molecular order in polymers by spatial confinement, to fabricate ambipolar organic field effect transistors and inverter circuits based on nanostructured single component ambipolar polymeric semiconductor. In our devices, the current flows through a precisely defined array of nanostripes made of a highly ordered diketopyrrolopyrrole-benzothiadiazole copolymer with high charge carrier mobility (1.45 cm2 V-1 s-1 for electrons and 0.70 cm2 V-1 s-1 for holes). Finally, we demonstrated the functionality of the ambipolar nanostripe transistors by assembling them into an inverter circuit that exhibits a gain (105) comparable to inverters based on single crystal semiconductors.
Resumo:
In this letter, the performance characteristics of top-gate and dual-gate thin-film transistors (TFTs) with active semiconductor layers consisting of diketopyrrolopyrrole-naphthalene copolymer are described. Optimized top-gate TFTs possess mobilities of up to 1 cm 2 /V s with low contact resistance and reduced hysteresis in air. Dual-gate devices possess higher drive currents as well as improved subthreshold and above threshold characteristics compared to single-gate devices. We also describe the reasons that dual-gate devices result in improved performance. The good stability of this polymer combined with their promising electrical properties make this material a very promising semiconductor for printable electronics.
Resumo:
In this letter, the velocity distributions of charge carriers in high-mobility polymer thin-film transistors (TFTs) with a diketopyrrolopyrrole- naphthalene copolymer (PDPP-TNT) semiconductor active layer are reported. The velocity distributions are found to be strongly dependent on measurement temperatures as well as annealing conditions. Considerable inhomogeneity is evident at low measurement temperatures and for low annealing temperatures. Such transient transport measurements can provide additional information about charge carrier transport in TFTs which are unavailable using steady-state transport measurements.
Resumo:
We report charge-carrier velocity distributions in high-mobility polymer thin-film transistors (PTFTs) employing a dual-gate configuration. Our time-domain measurements of dual-gate PTFTs indicate higher effective mobility as well as fewer low-velocity carriers than in single-gate operation. Such nonquasi-static (NQS) measurements support and clarify the previously reported results of improved device performance in dual-gate devices by various groups. We believe that this letter demonstrates the utility of NQS measurements in studying charge-carrier transport in dual-gate thin-film transistors.
Resumo:
In this paper, we report on the device physics and charge transport characteristics of high-mobility dual-gated polymer thin-film transistors with active semiconductor layers consisting of thiophene flanked DPP with thienylene-vinylene-thienylene (PDPP-TVT) alternating copolymers. Room temperature mobilities in these devices are high and can exceed 2 cm2 V-1 s-1. Steady-state and non-quasi-static measurements have been performed to extract key transport parameters and velocity distributions of charge carriers in this copolymer. Charge transport in this polymer semiconductor can be explained using a Multiple-Trap-and-Release or Monroe-type model. We also compare the activation energy vs. field-effect mobility in a few important polymer semiconductors to gain a better understanding of transport of DPP systems and make appropriate comparisons.