979 resultados para COLLOIDAL SEMICONDUCTOR NANOCRYSTALS
Resumo:
Piikarbidi (SiC) on tunnettu korkealuokkaisena hioma-aineena ja hiekkapaperin pin-noitteena yli 100 vuoden ajan. Nykyisin ainetta käytetään pääasiassa puolijohteiden raaka-aineena. Piikarbidi on puolijohteena ylivoimainen tavanomaiseen piihin (Si) verrattuna lähes joka suhteessa johtuen sen kiderakenteesta, mutta sen valmistus on osoittautunut erittäin monimutkaiseksi johtuen pääasiassa vaikeudesta kasvattaa riittävän suuria ja laadukkaita SiC-kiteitä. Siksi tehoelektroniikan SiC-puolijohdekomponenttien laajamittaista käyttöä joudutaan yhä odottamaan. Tässä diplomityössä tehdään perusteellinen selvitys, miten piikarbidin valmistuspro-sessit eroavat normaaleista piin valmistusprosesseista, mitä etuja piikarbidin käytöllä saavutetaan ja vastaavasti mitä varjopuolia sillä on. Työssä selvitetään tällä hetkellä markkinoilla olevien SiC-tehopuolijohdekomponenttien ominaisuuksia, ketkä ovat teh-neet tutkimusta alalla, sekä esitetään arvioita SiC-tekniikan tulevaisuuden näkymistä.
Resumo:
Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.
Resumo:
Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H.
Resumo:
Fetoscopic coagulation of placental anastomoses is the treatment of choice for severe twin-to-twin transfusion syndrome. In the present day, fetal laser therapy is also used to treat amniotic bands, chorioangiomas, sacrococcygeal teratomas, lower urinary tract obstructions and chest masses, all of which will be reviewed in this article. Amniotic band syndrome can cause limb amputation by impairing downstream blood flow. Large chorioangiomas (>4 cm), sacrococcygeal teratomas or fetal hyperechoic lung lesions can lead to fetal compromise and hydrops by vascular steal phenomenon or compression. Renal damage, bladder dysfunction and lastly death because of pulmonary hypolasia may be the result of megacystis caused by a posterior urethral valve. The prognosis of these pathologies can be dismal, and therapy options are limited, which has brought fetal laser therapy to the forefront. Management options discussed here are laser release of amniotic bands, laser coagulation of the placental or fetal tumor feeding vessels and laser therapy by fetal cystoscopy. This review, largely based on case reports, does not intend to provide a level of evidence supporting laser therapy over other treatment options. Centralized evaluation by specialists using strict selection criteria and long-term follow-up of these rare cases are now needed to prove the value of endoscopic or ultrasound-guided laser therapy.
Microdoping compensation of microcrystalline silicon obtained by Hot-Wire Chemical Vapour Deposition
Resumo:
Undoped hydrogenated microcrystalline silicon was obtained by hot-wire chemical vapour deposition at different silane-to-hydrogen ratios and low temperature (<300 °C). As well as technological aspects of the deposition process, we report structural, optical and electrical characterizations of the samples that were used as the active layer for preliminary p-i-n solar cells. Raman spectroscopy indicates that changing the hydrogen dilution can vary the crystalline fraction. From electrical measurements an unwanted n-type character is deduced for this undoped material. This effect could be due to a contaminant, probably oxygen, which is also observed in capacitance-voltage measurements on Schottky structures. The negative effect of contaminants on the device was dramatic and a compensated p-i-n structure was also deposited to enhance the cell performance.
Resumo:
We use the analogy between scattering of a wave from a potential, and the precession of a spin-half particle in a magnetic field, to gain insight into the design of an antireflection coating for electrons in a semiconductor superlattice. It is shown that the classic recipes derived for optics are generally not applicable due to the different dispersion law for electrons. Using the stability conditions we show that a Poisson distribution of impedance steps is a better approximation than is a Gaussian distribution. Examples are given of filters with average transmissivity exceeding 95% over an allowed band.
Resumo:
The semiconductor particle detectors used at CERN experiments are exposed to radiation. Under radiation, the formation of lattice defects is unavoidable. The defects affect the depletion voltage and leakage current of the detectors, and hence affect on the signal-to-noise ratio of the detectors. This shortens the operational lifetime of the detectors. For this reason, the understanding of the formation and the effects of radiation induced defects is crucial for the development of radiation hard detectors. In this work, I have studied the effects of radiation induced defects-mostly vacancy related defects-with a simulation package, Silvaco. Thus, this work essentially concerns the effects of radiation induced defects, and native defects, on leakage currents in particle detectors. Impurity donor atom-vacancy complexes have been proved to cause insignificant increase of leakage current compared with the trivacancy and divacancy-oxygen centres. Native defects and divacancies have proven to cause some of the leakage current, which is relatively small compared with trivacancy and divacancy-oxygen.
Resumo:
We report on a field-effect light emitting device based on silicon nanocrystals in silicon oxide deposited by plasma-enhanced chemical vapor deposition. The device shows high power efficiency and long lifetime. The power efficiency is enhanced up to 0.1 %25 by the presence of a silicon nitride control layer. The leakage current reduction induced by this nitride buffer effectively increases the power efficiency two orders of magnitude with regard to similarly processed devices with solely oxide. In addition, the nitride cools down the electrons that reach the polycrystalline silicon gate lowering the formation of defects, which significantly reduces the device degradation.
Resumo:
Abstract Objective: To determine whether low-level laser therapy can prevent salivary hypofunction after radiotherapy and chemotherapy in head and neck cancer patients. Materials and Methods: We evaluated 23 head and neck cancer patients, of whom 13 received laser therapy and 10 received clinical care only. An InGaAlP laser was used intra-orally (at 660 nm and 40 mW) at a mean dose of 10.0 J/cm2 and extra-orally (at 780 nm and 15 mW) at a mean dose of 3.7 J/cm2, three times per week, on alternate days. Stimulated and unstimulated sialometry tests were performed before the first radiotherapy and chemotherapy sessions (N0) and at 30 days after the end of treatment (N30). Results: At N30, the mean salivary flow rates were significantly higher among the laser therapy patients than among the patients who received clinical care only, in the stimulated and unstimulated sialometry tests (p = 0.0131 and p = 0.0143, respectively). Conclusion: Low-level laser therapy, administered concomitantly with radiotherapy and chemotherapy, appears to mitigate treatment-induced salivary hypofunction in patients with head and neck cancer.
Resumo:
The plasma etching of semiconductor surfaces with fluorine-containing compounds has technological interest. Presently, considerable effort is being devoted to understand the chemistry involved. In this work, a numerical modeling analysis of the gas-phase decomposition of CF4/O2 mixtures, in the presence of silicon, was performed. The relative importance of individual processes was determined as well as the effect of the parameters' uncertainties. The results were compared with experimental data. The main etching agent in the system is the fluorine atom. The concentration of the main species, SiF4, CO, CO2 and COF2 depend on the composition of the mixture.
Resumo:
SnO2 thin layers, prepared from aqueous colloidal suspensions by the sol-gel process, have been dip-coated on commercial borosilicate glasses. The effect of the conditions of deposition on the optical and structural characteristics of the thin layers was analysed by UV-Vis spectroscopy, x-ray reflectometry and electron scanning microscopy. Layers prepared with withdrawal speed in between 0.1 and 10cm/min show thickness smaller than 90nm, roughness of the order of 2nm and transmittance higher than 80%, resulting in good optical quality samples. The roughness increases from 2 to 11nm as the withdrawal speed increases from 10 to 80cm/min, what seems to be associated to the enlargement of the layers thickness (> 90nm). The measurements of mass loss, done after etching with fluoridric acid show that the coated samples are more corrosion resistant than the uncoated borosilicate glass.
Resumo:
Multicomponent ceramics are mainly synthesized by conventional solid-state reaction route and sol-gel routes. In the sol-gel route, colloidal or polymeric gel are envolved. In this work, some principles of the chemistry of theses routes are discused and it is ilustrated a variety of strategies for obtaining a homogeneous multicomponent precursors.
Resumo:
A nanostructured disordered Fe(Al) solid solution was obtained from elemental powders of Fe and Al using a high-energy ball mill. The transformations occurring in the material during milling were studied with the use of X-ray diffraction. In addition lattice microstrain, average crystallite size, dislocation density, and the lattice parameter were determined. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. Thermal behaviour of the milled powders was examined by differential scanning calorimetry (DSC). The results, as well as dissimilarity between calorimetric curves of the powders after 2 and 20 h of milling, indicated the formation of a nanostructured Fe(Al) solid solution
Resumo:
COD discharges out of processes have increased in line with elevating brightness demands for mechanical pulp and papers. The share of lignin-like substances in COD discharges is on average 75%. In this thesis, a plant dynamic model was created and validated as a means to predict COD loading and discharges out of a mill. The assays were carried out in one paper mill integrate producing mechanical printing papers. The objective in the modeling of plant dynamics was to predict day averages of COD load and discharges out of mills. This means that online data, like 1) the level of large storage towers of pulp and white water 2) pulp dosages, 3) production rates and 4) internal white water flows and discharges were used to create transients into the balances of solids and white water, referred to as “plant dynamics”. A conversion coefficient was verified between TOC and COD. The conversion coefficient was used for predicting the flows from TOC to COD to the waste water treatment plant. The COD load was modeled with similar uncertainty as in reference TOC sampling. The water balance of waste water treatment was validated by the reference concentration of COD. The difference of COD predictions against references was within the same deviation of TOC-predictions. The modeled yield losses and retention values of TOC in pulping and bleaching processes and the modeled fixing of colloidal TOC to solids between the pulping plant and the aeration basin in the waste water treatment plant were similar to references presented in literature. The valid water balances of the waste water treatment plant and the reduction model of lignin-like substances produced a valid prediction of COD discharges out of the mill. A 30% increase in the release of lignin-like substances in the form of production problems was observed in pulping and bleaching processes. The same increase was observed in COD discharges out of waste water treatment. In the prediction of annual COD discharge, it was noticed that the reduction of lignin has a wide deviation from year to year and from one mill to another. This made it difficult to compare the parameters of COD discharges validated in plant dynamic simulation with another mill producing mechanical printing papers. However, a trend of moving from unbleached towards high-brightness TMP in COD discharges was valid.
Resumo:
Potentiometric amalgam electrodes of lead, cadmium, and zinc are proposed to study the complexation properties of commercial and river sediment humic acids. The copper complexation properties of both humic acids were studied in parallel using the solid membrane copper ion-selective electrode (Cu-ISE). The complexing capacity and the averaged conditional stability constants were determined at pH 6.00 ± 0.05 in medium of 2x10-2 mol L-1 sodium nitrate, using the Scatchard method. The lead and cadmium amalgam electrodes presented a Nernstian behavior from 1x10-5 to 1x10-3 moles L-1 of total metal concentration, permitting to perform the complexation studies using humic acid concentrations around of 20 to 30 mg L-1, that avoids colloidal aggregation. The zinc amalgam electrode showed a subnernstian linear response in the same range of metal concentrations. The Scatchard graphs for both humic acids suggested two classes of binding sites for lead and copper and one class of binding site for zinc and cadmium.