977 resultados para COLLAGEN FIBER ORIENTATION
Resumo:
Quantum key distribution (QKD) uniquely allows distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10 Gbit Ethernet, QKD is a significant step closer towards wide-scale deployment in fiber networks.
Resumo:
We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2012 OSA.
Resumo:
We demonstrate a passively Q-switched thulium fiber laser, using a graphene-based saturable absorber. The laser is based on an all-fiber ring cavity and produces ∼2.3 μs pulses at 1884nm, with a maximum pulse energy of 70 nJ. © 2012 OSA.
Resumo:
A mode-locked Raman laser, using 25 m of a GeO2 doped fiber as the gain medium, is reported employing carbon nanotubes. The oscillator generates 850 ps chirped pulses, which are externally compressed to 185 ps. © 2012 OSA.
Resumo:
Employing a nanotube-based saturable absorber, we demonstrate a continuously tunable (1533-1563nm) ultrafast fiber laser, with output pulsewidth switchable between picosecond (1.2 ps) and femtosecond (610 fs) regimes. © 2012 IEEE.
Resumo:
We demonstrate a dual-wavelength, carbon nanotube mode-locked Er fiber laser. The laser outputs two wavelengths at 1549nm and 1562nm, and each wavelength corresponds to pulse duration of ∼1.3ps and repetition rate of ∼11.27MHz. © 2012 IEEE.
Resumo:
The combination of light carbon fiber reinforced polymer (CFRP) composite materials with structurally efficient sandwich panel designs offers novel opportunities for ultralight structures. Here, pyramidal truss sandwich cores with relative densities ρ̄ in the range 1-10% have been manufactured from carbon fiber reinforced polymer laminates by employing a snap-fitting method. The measured quasi-static shear strength varied between 0.8 and 7.5 MPa. Two failure modes were observed: (i) Euler buckling of the struts and (ii) delamination failure of the laminates. Micro-buckling failure of the struts was not observed in the experiments reported here while Euler buckling and delamination failures occurred for the low (ρ̄≤1%) and high (ρ̄>1%) relative density cores, respectively. Analytical models for the collapse of the composite cores by these failure modes are presented. Good agreement between the measurements and predictions based on the Euler buckling and delamination failure of the struts is observed while the micro-buckling analysis over-predicts the measurements. The CFRP pyramidal cores investigated here have a similar mechanical performance to CFRP honeycombs. Thus, for a range of multi-functional applications that require an "open-celled" architecture (e.g. so that cooling fluid can pass through a sandwich core), the CFRP pyramidal cores offer an attractive alternative to honeycombs. © 2012 Elsevier Ltd. All rights reserved.
On the generality of crowding: visual crowding in size, saturation, and hue compared to orientation.
Resumo:
Perception of peripherally viewed shapes is impaired when surrounded by similar shapes. This phenomenon is commonly referred to as "crowding". Although studied extensively for perception of characters (mainly letters) and, to a lesser extent, for orientation, little is known about whether and how crowding affects perception of other features. Nevertheless, current crowding models suggest that the effect should be rather general and thus not restricted to letters and orientation. Here, we report on a series of experiments investigating crowding in the following elementary feature dimensions: size, hue, and saturation. Crowding effects in these dimensions were benchmarked against those in the orientation domain. Our primary finding is that all features studied show clear signs of crowding. First, identification thresholds increase with decreasing mask spacing. Second, for all tested features, critical spacing appears to be roughly half the viewing eccentricity and independent of stimulus size, a property previously proposed as the hallmark of crowding. Interestingly, although critical spacings are highly comparable, crowding magnitude differs across features: Size crowding is almost as strong as orientation crowding, whereas the effect is much weaker for saturation and hue. We suggest that future theories and models of crowding should be able to accommodate these differences in crowding effects.
Resumo:
The role of the collagen-platelet interaction is of crucial importance to the haemostatic response during both injury and pathogenesis of the blood vessel wall. Of particular interest is the high affinity interaction of the platelet transmembrane receptor, alpha 2 beta 1, responsible for firm attachment of platelets to collagen at and around injury sites. We employ single molecule force spectroscopy (SMFS) using the atomic force microscope (AFM) to study the interaction of the I-domain from integrin alpha 2 beta 1 with a synthetic collagen related triple-helical peptide containing the high-affinity integrin-binding GFOGER motif, and a control peptide lacking this sequence, referred to as GPP. By utilising synthetic peptides in this manner we are able to study at the molecular level subtleties that would otherwise be lost when considering cell-to-collagen matrix interactions using ensemble techniques. We demonstrate for the first time the complexity of this interaction as illustrated by the complex multi-peaked force spectra and confirm specificity using control blocking experiments. In addition we observe specific interaction of the GPP peptide sequence with the I-domain. We propose a model to explain these observations.
Resumo:
A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19 kPa to 450±100 kPa. Stiffer hydrogels, with elastic modulus of 820±210 kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications.
Resumo:
This paper proposed a non-intrusive method of measuring the optical beam profile at the surface of the liquid crystal on silicon (LCOS) device in an optical fiber switch. This method is based on blazed grating and can be employed in situ (on-line) for two-dimensional beam profiling in the LCOS-based optical fiber switches without introducing additional components or rearranging the system. The measured beam radius was in excellent agreement with that measured by the knife-edge technique. © 2013 Elsevier Ltd.
Resumo:
Electron and hole conducting 10-nm-wide polymer morphologies hold great promise for organic electro-optical devices such as solar cells and light emitting diodes. The self-assembly of block-copolymers (BCPs) is often viewed as an efficient way to generate such materials. Here, a functional block copolymer that contains perylene bismide (PBI) side chains which can crystallize via π-π stacking to form an electron conducting microphase is patterned harnessing hierarchical electrohydrodynamic lithography (HEHL). HEHL film destabilization creates a hierarchical structure with three distinct length scales: (1) micrometer-sized polymer pillars, containing (2) a 10-nm BCP microphase morphology that is aligned perpendicular to the substrate surface and (3) on a molecular length scale (0.35-3 nm) PBI π-π-stacks traverse the HEHL-generated plugs in a continuous fashion. The good control over BCP and PBI alignment inside the generated vertical microstructures gives rise to liquid-crystal-like optical dichroism of the HEHL patterned films, and improves the electron conductivity across the film by 3 orders of magnitude. © 2013 American Chemical Society.
Resumo:
We present a novel method for controlling the growth orientation of individual carbon nanotube (CNT) microstructures on a silicon wafer substrate. Our method controls the CNT forest orientation by patterning the catalyst layer used in the CNTs growth on slanted KOH edges. The overlap of catalyst area on the horizontal bottom and sloped sidewall surfaces of the KOH-etched substrate enables precise variation of the growth direction. These inclined structures can profit from the outstanding mechanical, electrical, thermal, and optical properties of CNTs and can therefore improve the performance of several MEMS devices. Inclined CNT microstructures could for instance be used as cantilever springs in probe card arrays, as tips in dip-pen lithography, and as sensing element in advanced transducers. ©2009 IEEE.