964 resultados para CLASTIC INPUTS
Resumo:
Both multilayer perceptrons (MLP) and Generalized Radial Basis Functions (GRBF) have good approximation properties, theoretically and experimentally. Are they related? The main point of this paper is to show that for normalized inputs, multilayer perceptron networks are radial function networks (albeit with a non-standard radial function). This provides an interpretation of the weights w as centers t of the radial function network, and therefore as equivalent to templates. This insight may be useful for practical applications, including better initialization procedures for MLP. In the remainder of the paper, we discuss the relation between the radial functions that correspond to the sigmoid for normalized inputs and well-behaved radial basis functions, such as the Gaussian. In particular, we observe that the radial function associated with the sigmoid is an activation function that is good approximation to Gaussian basis functions for a range of values of the bias parameter. The implication is that a MLP network can always simulate a Gaussian GRBF network (with the same number of units but less parameters); the converse is true only for certain values of the bias parameter. Numerical experiments indicate that this constraint is not always satisfied in practice by MLP networks trained with backpropagation. Multiscale GRBF networks, on the other hand, can approximate MLP networks with a similar number of parameters.
Resumo:
We describe a software package for computing and manipulating the subdivision of a sphere by a collection of (not necessarily great) circles and for computing the boundary surface of the union of spheres. We present problems that arise in the implementation of the software and the solutions that we have found for them. At the core of the paper is a novel perturbation scheme to overcome degeneracies and precision problems in computing spherical arrangements while using floating point arithmetic. The scheme is relatively simple, it balances between the efficiency of computation and the magnitude of the perturbation, and it performs well in practice. In one O(n) time pass through the data, it perturbs the inputs necessary to insure no potential degeneracies and then passes the perturbed inputs on to the geometric algorithm. We report and discuss experimental results. Our package is a major component in a larger package aimed to support geometric queries on molecular models; it is currently employed by chemists working in "rational drug design." The spherical subdivisions are used to construct a geometric model of a molecule where each sphere represents an atom. We also give an overview of the molecular modeling package and detail additional features and implementation issues.
Resumo:
This thesis describes an investigation of retinal directional selectivity. We show intracellular (whole-cell patch) recordings in turtle retina which indicate that this computation occurs prior to the ganglion cell, and we describe a pre-ganglionic circuit model to account for this and other findings which places the non-linear spatio-temporal filter at individual, oriented amacrine cell dendrites. The key non-linearity is provided by interactions between excitatory and inhibitory synaptic inputs onto the dendrites, and their distal tips provide directionally selective excitatory outputs onto ganglion cells. Detailed simulations of putative cells support this model, given reasonable parameter constraints. The performance of the model also suggests that this computational substructure may be relevant within the dendritic trees of CNS neurons in general.
Resumo:
Control of machines that exhibit flexibility becomes important when designers attempt to push the state of the art with faster, lighter machines. Three steps are necessary for the control of a flexible planet. First, a good model of the plant must exist. Second, a good controller must be designed. Third, inputs to the controller must be constructed using knowledge of the system dynamic response. There is a great deal of literature pertaining to modeling and control but little dealing with the shaping of system inputs. Chapter 2 examines two input shaping techniques based on frequency domain analysis. The first involves the use of the first deriviate of a gaussian exponential as a driving function template. The second, acasual filtering, involves removal of energy from the driving functions at the resonant frequencies of the system. Chapter 3 presents a linear programming technique for generating vibration-reducing driving functions for systems. Chapter 4 extends the results of the previous chapter by developing a direct solution to the new class of driving functions. A detailed analysis of the new technique is presented from five different perspectives and several extensions are presented. Chapter 5 verifies the theories of the previous two chapters with hardware experiments. Because the new technique resembles common signal filtering, chapter 6 compares the new approach to eleven standard filters. The new technique will be shown to result in less residual vibrations, have better robustness to system parameter uncertainty, and require less computation than other currently used shaping techniques.
Resumo:
A fundamental problem in artificial intelligence is obtaining coherent behavior in rule-based problem solving systems. A good quantitative measure of coherence is time behavior; a system that never, in retrospect, applied a rule needlessly is certainly coherent; a system suffering from combinatorial blowup is certainly behaving incoherently. This report describes a rule-based problem solving system for automatically writing and improving numerical computer programs from specifications. The specifications are in terms of "constraints" among inputs and outputs. The system has solved program synthesis problems involving systems of equations, determining that methods of successive approximation converge, transforming recursion to iteration, and manipulating power series (using differing organizations, control structures, and argument-passing techniques).
Resumo:
The constraint paradigm is a model of computation in which values are deduced whenever possible, under the limitation that deductions be local in a certain sense. One may visualize a constraint 'program' as a network of devices connected by wires. Data values may flow along the wires, and computation is performed by the devices. A device computes using only locally available information (with a few exceptions), and places newly derived values on other, locally attached wires. In this way computed values are propagated. An advantage of the constraint paradigm (not unique to it) is that a single relationship can be used in more than one direction. The connections to a device are not labelled as inputs and outputs; a device will compute with whatever values are available, and produce as many new values as it can. General theorem provers are capable of such behavior, but tend to suffer from combinatorial explosion; it is not usually useful to derive all the possible consequences of a set of hypotheses. The constraint paradigm places a certain kind of limitation on the deduction process. The limitations imposed by the constraint paradigm are not the only one possible. It is argued, however, that they are restrictive enough to forestall combinatorial explosion in many interesting computational situations, yet permissive enough to allow useful computations in practical situations. Moreover, the paradigm is intuitive: It is easy to visualize the computational effects of these particular limitations, and the paradigm is a natural way of expressing programs for certain applications, in particular relationships arising in computer-aided design. A number of implementations of constraint-based programming languages are presented. A progression of ever more powerful languages is described, complete implementations are presented and design difficulties and alternatives are discussed. The goal approached, though not quite reached, is a complete programming system which will implicitly support the constraint paradigm to the same extent that LISP, say, supports automatic storage management.
Resumo:
This paper describes an experiment developed to study the performance of virtual agent animated cues within digital interfaces. Increasingly, agents are used in virtual environments as part of the branding process and to guide user interaction. However, the level of agent detail required to establish and enhance efficient allocation of attention remains unclear. Although complex agent motion is now possible, it is costly to implement and so should only be routinely implemented if a clear benefit can be shown. Pevious methods of assessing the effect of gaze-cueing as a solution to scene complexity have relied principally on two-dimensional static scenes and manual peripheral inputs. Two experiments were run to address the question of agent cues on human-computer interfaces. Both experiments measured the efficiency of agent cues analyzing participant responses either by gaze or by touch respectively. In the first experiment, an eye-movement recorder was used to directly assess the immediate overt allocation of attention by capturing the participant’s eyefixations following presentation of a cueing stimulus. We found that a fully animated agent could speed up user interaction with the interface. When user attention was directed using a fully animated agent cue, users responded 35% faster when compared with stepped 2-image agent cues, and 42% faster when compared with a static 1-image cue. The second experiment recorded participant responses on a touch screen using same agent cues. Analysis of touch inputs confirmed the results of gaze-experiment, where fully animated agent made shortest time response with a slight decrease on the time difference comparisons. Responses to fully animated agent were 17% and 20% faster when compared with 2-image and 1-image cue severally. These results inform techniques aimed at engaging users’ attention in complex scenes such as computer games and digital transactions within public or social interaction contexts by demonstrating the benefits of dynamic gaze and head cueing directly on the users’ eye movements and touch responses.
Resumo:
We propose a new notion of cryptographic tamper evidence. A tamper-evident signature scheme provides an additional procedure Div which detects tampering: given two signatures, Div can determine whether one of them was generated by the forger. Surprisingly, this is possible even after the adversary has inconspicuously learned (exposed) some-or even all-the secrets in the system. In this case, it might be impossible to tell which signature is generated by the legitimate signer and which by the forger. But at least the fact of the tampering will be made evident. We define several variants of tamper-evidence, differing in their power to detect tampering. In all of these, we assume an equally powerful adversary: she adaptively controls all the inputs to the legitimate signer (i.e., all messages to be signed and their timing), and observes all his outputs; she can also adaptively expose all the secrets at arbitrary times. We provide tamper-evident schemes for all the variants and prove their optimality. Achieving the strongest tamper evidence turns out to be provably expensive. However, we define a somewhat weaker, but still practical, variant: α-synchronous tamper-evidence (α-te) and provide α-te schemes with logarithmic cost. Our α-te schemes use a combinatorial construction of α-separating sets, which might be of independent interest. We stress that our mechanisms are purely cryptographic: the tamper-detection algorithm Div is stateless and takes no inputs except the two signatures (in particular, it keeps no logs), we use no infrastructure (or other ways to conceal additional secrets), and we use no hardware properties (except those implied by the standard cryptographic assumptions, such as random number generators). Our constructions are based on arbitrary ordinary signature schemes and do not require random oracles.
Resumo:
A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.
Resumo:
Formal tools like finite-state model checkers have proven useful in verifying the correctness of systems of bounded size and for hardening single system components against arbitrary inputs. However, conventional applications of these techniques are not well suited to characterizing emergent behaviors of large compositions of processes. In this paper, we present a methodology by which arbitrarily large compositions of components can, if sufficient conditions are proven concerning properties of small compositions, be modeled and completely verified by performing formal verifications upon only a finite set of compositions. The sufficient conditions take the form of reductions, which are claims that particular sequences of components will be causally indistinguishable from other shorter sequences of components. We show how this methodology can be applied to a variety of network protocol applications, including two features of the HTTP protocol, a simple active networking applet, and a proposed web cache consistency algorithm. We also doing discuss its applicability to framing protocol design goals and to representing systems which employ non-model-checking verification methodologies. Finally, we briefly discuss how we hope to broaden this methodology to more general topological compositions of network applications.
Resumo:
We consider a fault model of Boolean gates, both classical and quantum, where some of the inputs may not be connected to the actual gate hardware. This model is somewhat similar to the stuck-at model which is a very popular model in testing Boolean circuits. We consider the problem of detecting such faults; the detection algorithm can query the faulty gate and its complexity is the number of such queries. This problem is related to determining the sensitivity of Boolean functions. We show how quantum parallelism can be used to detect such faults. Specifically, we show that a quantum algorithm can detect such faults more efficiently than a classical algorithm for a Parity gate and an AND gate. We give explicit constructions of quantum detector algorithms and show lower bounds for classical algorithms. We show that the model for detecting such faults is similar to algebraic decision trees and extend some known results from quantum query complexity to prove some of our results.
Resumo:
The heterogeneity and open nature of network systems make analysis of compositions of components quite challenging, making the design and implementation of robust network services largely inaccessible to the average programmer. We propose the development of a novel type system and practical type spaces which reflect simplified representations of the results and conclusions which can be derived from complex compositional theories in more accessible ways, essentially allowing the system architect or programmer to be exposed only to the inputs and output of compositional analysis without having to be familiar with the ins and outs of its internals. Toward this end we present the TRAFFIC (Typed Representation and Analysis of Flows For Interoperability Checks) framework, a simple flow-composition and typing language with corresponding type system. We then discuss and demonstrate the expressive power of a type space for TRAFFIC derived from the network calculus, allowing us to reason about and infer such properties as data arrival, transit, and loss rates in large composite network applications.
Resumo:
To investigate the process underlying audiovisual speech perception, the McGurk illusion was examined across a range of phonetic contexts. Two major changes were found. First, the frequency of illusory /g/ fusion percepts increased relative to the frequency of illusory /d/ fusion percepts as vowel context was shifted from /i/ to /a/ to /u/. This trend could not be explained by biases present in perception of the unimodal visual stimuli. However, the change found in the McGurk fusion effect across vowel environments did correspond systematically with changes in second format frequency patterns across contexts. Second, the order of consonants in illusory combination percepts was found to depend on syllable type. This may be due to differences occuring across syllable contexts in the timecourses of inputs from the two modalities as delaying the auditory track of a vowel-consonant stimulus resulted in a change in the order of consonants perceived. Taken together, these results suggest that the speech perception system either fuses audiovisual inputs into a visually compatible percept with a similar second formant pattern to that of the acoustic stimulus or interleaves the information from different modalities, at a phonemic or subphonemic level, based on their relative arrival times.
Resumo:
Perceptual grouping is well-known to be a fundamental process during visual perception, notably grouping across scenic regions that do not receive contrastive visual inputs. Illusory contours are a classical example of such groupings. Recent psychophysical and neurophysiological evidence have shown that the grouping process can facilitate rapid synchronization of the cells that are bound together by a grouping, even when the grouping must be completed across regions that receive no contrastive inputs. Synchronous grouping can hereby bind together different object parts that may have become desynchronized due to a variety of factors, and can enhance the efficiency of cortical transmission. Neural models of perceptual grouping have clarified how such fast synchronization may occur by using bipole grouping cells, whose predicted properties have been supported by psychophysical, anatomical, and neurophysiological experiments. These models have not, however, incorporated some of the realistic constraints on which groupings in the brain are conditioned, notably the measured spatial extent of long-range interactions in layer 2/3 of a grouping network, and realistic synaptic and axonal signaling delays within and across cells in different cortical layers. This work addresses the question: Can long-range interactions that obey the bipole constraint achieve fast synchronization under realistic anatomical and neurophysiological constraints that initially desynchronize grouping signals? Can the cells that synchronize retain their analog sensitivity to changing input amplitudes? Can the grouping process complete and synchronize illusory contours across gaps in bottom-up inputs? Our simulations show that the answer to these questions is Yes.
Resumo:
Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.