949 resultados para CHICKEN ANTIBODIES
Resumo:
The prevalence of antirotavirus antibodies in chickens and turkeys in the Gonzales, Texas and Llano, Texas areas was studied. Caged layer chicken flocks were found to have a prevalence of 64% when samples were taken randomly. This compares to 45% in chicken broiler breeder flocks and 92% in turkey breeding flocks. The natural occurrence of turkey rotavirus infection in two separate field studies showed an increase in mortality varying from 9% to 45% above expected death losses. Clinically, pasted vents, lacitude, and general malaise were noted in affected poults. Lesions noted on post mortem examination were; slight ballooning of the small intestine, excessively large ceca, and mild hyperemia of the small and large intestines.^ The use of maternal antibody from simian rotavirus immunized chickens' eggs for preventing murine rotavirus infection in infant mice was investigated. There was a reduction from 91% to 15% incidence when infant mice were treated twice daily with egg yolk immunoglobulin.^ The need for a convenient, easily grown and rapidly reproducing model for avian and mammalian rotaviruses led to the use of coturnix chicks. The turkey rotavirus was adapted to the quail chicks be serial passage. Transmission and scanning electron microscopy as well as micropathological methods were used in the study of the pathogenesis of rotavirus infection in quail and infant mice. ^
Resumo:
The slow/cardiac alkali myosin light chain (MLC1s/1c) is a member of a multigene family whose protein products are essential for activation of the myosin ATPase. In the adult, the MLC1s/1c isoform is expressed in both cardiac and slow-twitch skeletal muscles, while it is expressed by all skeletal muscles during development.^ To elucidate the molecular mechanisms that underlie the transcriptional regulation of MLC1s/1c gene expression, the immediate 5$\sp\prime$ flanking region of the gene was isolated and shown to be capable of directing reporter gene expression. Analysis of this region revealed a 110 bp muscle-specific enhancer that includes a myocyte-specific enhancer-binding factor 2 (MEF-2) site, E-boxes, which are potential binding sites for the basic-helix-loop-helix proteins such as MyoD, and a MLC box. The focus of the thesis was to identify the role of the MLC box in expression of the MLC1s/1c gene.^ The MLC box is a member of the family of CArG box containing cis-acting DNA elements. Mutagenesis showed that the MLC box is necessary, but not sufficient, for the expression of a reporter gene linked to the 5$\sp\prime$ flanking region of the MLC1s/1c gene. Linker scanner and site-directed mutagenesis identified a number of potential sites within the 110 bp muscle-specific enhancer that may cooperate with the MLC box. These are the MEF-2 site, the E-box site, and a 10 bp element located upstream of the MEF-2 site that does not have sequence similarity with any known cis-acting element. The MLC box is capable of binding to factors present in muscle nuclear extracts, as well as to human recombinant serum response factor (SRF). Binding of SRF to the MLC box was correlated with the ability of the 5$\sp\prime$ flanking region of the MLC1s/1c gene to drive reporter gene expression. Results suggest a model in which binding of SRF to the MLC box activates expression of the MLC1s/1c gene while binding of the factors present in the nuclear extracts suppresses the expression of the gene. (Abstract shortened with permission of author.) ^
Resumo:
The neuropeptide somatostatin is a widely distributed general inhibitor of endocrine, exocrine, gastrointestinal and neural functions. The biological actions of somatostatin are initiated by interaction with high affinity, plasma membrane somatostatin receptors (sst receptors). Five sst receptor subtypes have been cloned and sequence analysis shows they are all members of the G protein coupled receptor superfamily. The G proteins play a pivotal role in sst receptor signal transduction and the specificity of somatostatin receptor-G protein coupling defines the possible range of cellular responses. However, the data for endogenous sst receptor and G protein coupling is very limited, and even when it is available, the sst receptor subtypes involved in G protein coupling and signal transduction are unknown due to the expression of multiple sst receptor subtypes in target cell lines or tissues of somatostatin.^ In an effort to characterize each individual sst receptor subtypes, antisera against unique C-terminal regions of different sst receptor subtypes have been developed in our lab. In this report, antisera made against the sst1, sst2A and sst4 receptors are characterized. They are highly specific to their corresponding receptors and efficiently immunoprecipitate the sst receptors. Using these antibodies, the cell lines expressing these sst receptor subtypes were identified with both immunoprecipitation and Western blot methods. The development of sst receptor subtype specific antibodies make it possible to determine the specificity of the sst receptor subtype and G protein coupling in target cells or tissues expressing multiple sst receptors, two questions were addressed by this thesis: (1) whether different cellular environments affect receptor subtype and G protein coupling; (2) whether different sst receptors couple to different G proteins in similar cellular environments.^ Taken together our findings, both sst1 and sst2A receptors couple with G$\alpha\sb{\rm i1},$ G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in CHO cells, G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in GH$\sb4$C$\sb1$ cells. Further, sst2A receptors couple with G$\alpha\sb{\rm i1},$ G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in AR4-2J cells while sst4 receptors couple with G$\alpha\sb{\rm i2}$ and G$\alpha\sb{\rm i3}$ in CHO cells. Therefore, the G protein coupling of the same sst receptors in different cell lines is basically similar in that they all couple with multiple $\alpha$-subunits of the G$\rm \sb{i}$ proteins, suggesting cellular environment has little effect on receptor and G protein coupling. Moreover, different sst receptors have similar G protein coupling specificities in the same cell line, suggesting components other than receptor and G$\alpha$ subunits in the signal transduction pathways may contribute to specific functions of each sst receptor subtype. This series of experiments represent a novel approach in dissecting signal transduction pathways and may have general application in the field. Furthermore, this is the first systematic study of sst receptor subtype and G protein $\alpha$-subunit interaction in both transfected cells and in normal cell lines. The information generated will be very useful in our understanding of sst receptor signal transduction pathways and in directing future sst receptor research. ^
Resumo:
Little is known about the prevalence of the parasite Toxoplasma gondii in the arctic marine food chain of Svalbard, Norway. In this study, plasma samples were analyzed for T. gondii antibodies using a direct agglutination test. Antibody prevalence was 45.6% among polar bears (Ursus maritimus), 18.7% among ringed seals (Pusa hispida) and 66.7% among adult bearded seals (Erignathus barbatus) from Svalbard, but no sign of antibodies were found in bearded seal pups, harbour seals (Phoca vitulina), white whales (Delphinapterus leucas) or narwhals (Monodon monoceros) from the same area. Prevalence was significantly higher in male polar bears (52.3%) compared with females (39.3%), likely due to dietary differences between the sexes. Compared to an earlier study, T. gondii prevalence in polar bears has doubled in the past decade. Consistently, an earlier study on ringed seals did not detect T. gondii. The high recent prevalence in polar bears, ringed seals and bearded seals could be caused by an increase in the number or survivorship of oocysts being transported via the North Atlantic Current to Svalbard from southern latitudes. Warmer water temperatures have led to influxes of temperate marine invertebrate filter-feeders that could be vectors for oocysts and warmer water is also likely to favour higher survivorship of oocycts. However, a more diverse than normal array of migratory birds in the Archipelago recently, as well as a marked increase in cruise-ship and other human traffic are also potential sources of T. gondii.
(Table 4) Rates of seropositivity for Toxoplasma gondii antibodies in marine mammals by age category
Resumo:
Mutations are introduced into rearranged Ig variable genes at a frequency of 10−2 mutations per base pair by an unknown mechanism. Assuming that DNA repair pathways generate or remove mutations, the frequency and pattern of mutation will be different in variable genes from mice defective in repair. Therefore, hypermutation was studied in mice deficient for either the DNA nucleotide excision repair gene Xpa or the mismatch repair gene Pms2. High levels of mutation were found in variable genes from XPA-deficient and PMS2-deficient mice, indicating that neither nucleotide excision repair nor mismatch repair pathways generate hypermutation. However, variable genes from PMS2-deficient mice had significantly more adjacent base substitutions than genes from wild-type or XPA-deficient mice. By using a biochemical assay, we confirmed that tandem mispairs were repaired by wild-type cells but not by Pms2−/− human or murine cells. The data indicate that tandem substitutions are produced by the hypermutation mechanism and then processed by a PMS2-dependent pathway.
Resumo:
Two mouse monoclonal anti-anti-idiotopic antibodies (anti-anti-Id, Ab3), AF14 and AF52, were prepared by immunizing BALB/c mice with rabbit polyclonal anti-idiotypic antibodies (anti-Id, Ab2) raised against antibody D1.3 (Ab1) specific for the antigen hen egg lysozyme. AF14 and AF52 react with an “internal image” monoclonal mouse anti-Id antibody E5.2 (Ab2), previously raised against D1.3, with affinity constants (1.0 × 109 M−1 and 2.4 × 107 M−1, respectively) usually observed in secondary responses against protein antigens. They also react with the antigen but with lower affinity (1.8 × 106 M−1 and 3.8 × 106 M−1). This pattern of affinities for the anti-Id and for the antigen also was displayed by the sera of the immunized mice. The amino acid sequences of AF14 and AF52 are very close to that of D1.3. In particular, the amino acid side chains that contribute to contacts with both antigen and anti-Id are largely conserved in AF14 and AF52 compared with D1.3. Therapeutic immunizations against different pathogenic antigens using anti-Id antibodies have been proposed. Our experiments show that a response to an anti-Id immunogen elicits anti-anti-Id antibodies that are optimized for binding the anti-Id antibodies rather than the antigen.
Resumo:
The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.
Resumo:
Anti-P antibodies present in sera from patients with chronic Chagas heart disease (cChHD) recognize peptide R13, EEEDDDMGFGLFD, which encompasses the C-terminal region of the Trypanosoma cruzi ribosomal P1 and P2 proteins. This peptide shares homology with the C-terminal region (peptide H13 EESDDDMGFGLFD) of the human ribosomal P proteins, which is in turn the target of anti-P autoantibodies in systemic lupus erythematosus (SLE), and with the acidic epitope, AESDE, of the second extracellular loop of the β1-adrenergic receptor. Anti-P antibodies from chagasic patients showed a marked preference for recombinant parasite ribosomal P proteins and peptides, whereas anti-P autoantibodies from SLE reacted with human and parasite ribosomal P proteins and peptides to the same extent. A semi-quantitative estimation of the binding of cChHD anti-P antibodies to R13 and H13 using biosensor technology indicated that the average affinity constant was about 5 times higher for R13 than for H13. Competitive enzyme immunoassays demonstrated that cChHD anti-P antibodies bind to the acidic portions of peptide H13, as well as to peptide H26R, encompassing the second extracellular loop of the β1 adrenoreceptor. Anti-P antibodies isolated from cChHD patients exert a positive chronotropic effect in vitro on cardiomyocytes from neonatal rats, which resembles closely that of anti-β1 receptor antibodies isolated from the same patient. In contrast, SLE anti-P autoantibodies have no functional effect. Our results suggest that the adrenergic-stimulating activity of anti-P antibodies may be implicated in the induction of functional myocardial impairments observed in cChHD.
Resumo:
Circulating autoantibodies to phospholipids (aPLs), such as cardiolipin (CL), are found in patients with antiphospholipid antibody syndrome (APS). We recently demonstrated that many aPLs bound to CL only after it had been oxidized (OxCL), but not to a reduced CL analogue that could not undergo oxidation. We now show that the neoepitopes recognized by some aPLs consist of adducts formed between breakdown products of oxidized phospholipid and associated proteins, such as β2 glycoprotein 1 (β2GP1). Addition of human β2GP1, polylysine, native low-density lipoprotein, or apolipoprotein AI to OxCL-coated wells increased the anticardiolipin antibody (aCL) binding from APS sera that first had been diluted so that no aCL binding to OxCL could be detected. No increase in aCL binding was observed when these proteins were added to wells coated with reduced CL. The ability of β2GP1, polylysine, or low-density lipoprotein to be a “cofactor” for aCL binding to OxCL was greatly reduced when the proteins were methylated. Incubation of β2GP1 with oxidized 1-palmitoyl-2-linoleyl-[1-14C]-phosphatidylcholine (PC), but not with dipalmitoyl-[1-14C]-PC, led to formation of covalent adducts with β2GP1 recognized by APS sera. These data suggest that the reactive groups of OxCL, such as aldehydes generated during the decomposition of oxidized polyunsaturated fatty acids, form covalent adducts with β2GP1 (and other proteins) and that these are epitopes for aCLs. Knowledge that the epitopes recognized by many aPLs are adducts of oxidized phospholipid and associated proteins, including β2GP1, may give new insights into the pathogenic events underlying the clinical manifestations of APS.