994 resultados para CHEMICAL-COMPOSITION
Resumo:
In fault zones of the East Indian Ridge and adjacent areas of ocean floor almost monomineral sepiolite- and palygorskite clays have been found. They have been studied by a complex of optical and physical methods. Formation of authigenic sepiolites and palygorskite had occurred under influence of Mg- and Si-rich hydrothermal solutions by metasomatic replacement of montmorillonite clays, or by precipitation from saturated solutions in cracks of various rocks.
Resumo:
A manganese oxide encrustation (2.5 kg) was dredged, in an island arc setting, downslope of Bertrand bank, a seamount culminating at 70-m depth and located NNE of Grande-Terre, Guadeloupe, and SE of Antigua, West Indies. A thorough texturai analysis indicated a rhythmic precipitation and growth polarity as well as mineralogical ( 10 A tektomanganate) and geochemical (low concentrations of Ni, Cu, Co, Zn, Pb and REE) criteria, point to a submarine hydrothermal origin for most of the sample. The crust was coated with a fine ferromanganese oxide cortex deposited iii a "normal" oceanic environment; it also included micritic fillings, a main pyroclastic zone near the top of the crust, and a Mg-Al sulphate deposit. Planktonic foraminifera coeval with the precipitation of the manganese oxide indicate an age of ca. 3 m. y. (upper Pliocene); i.e., more than 20 m. y. after the cessation of the volcanic activity of the Lesser Antilles outer arc that was responsible for the buildup of the Bertrand seamount. Furthermore, the genesis of the crust is not linked to the activity of the contemporaneous inner arc (Miocene to Present), particularly of its nearmost segment (Basse Terre, Guadeloupe-Montserrat) located about 50 km to the West. The authors suggest that the manganese oxide is the result of convective circulation of sea water through a faulted system occurring in an area of intense seismic activity. The remobilization of chemical elements (Mn, S, etc.) within the seamount volcanic core bas probably affected a substratum that was still hydrothermally altered during the previous volcanic activity of the outer arc. The authors insist on the interest in using texturai analysis for Fe/Mn oxide investigations.
Resumo:
Results of a study of contents and accumulation rates of Fe, Mn, and some trace elements in Upper Quaternary sediments of the Deryugin Basin are presented. Maps of average contents and accumulation rates of excessive Fe, Mn, Zn, Ba, Ni, Pb, Cu, and Mo in sediments of the first oxygen isotope stage (OIS) have been plotted. Anomalous contents and accumulation rates are confined to peripheral zones of the Deryugin sedimentary basin and large fracture zones. Different mechanisms of influence of fluid-dynamic processes on rate of hydrogenic and biogenic accumulation of ore elements are assumed.
Resumo:
Ferromanganese concretions spread out on the bottom of the shallow northwest part of the Black Sea are mainly represented by Fe and Mn nodules on shells and substituted worm tubes. Element composition of these formations was measured by methods of chemical, atomic absorbtion, neutron activation, and ICP-MS analyses. It was established that Fe and Mn contents and Mn/Fe ratio in the concretions varied considerably and which controlled occurrence of several associated metals and minor elements; some of them have not been studied in Black Sea concretions before.
Resumo:
Content, distribution patterns, and speciation of Cl in phosphorites and bone phosphate from the ocean floor, as well as in a set of samples from the land are studied. Total Cl content varies from 0.05 to 4.25% in phosphorites and from 2.48 to 2.75% in recent phosphate-bearing sediments. Recent phosphorites are enriched in Cl relative to ancient ones. Bound Cl content (not extractable by washing), which increases with lithification, varies from 0.17 to 0.60% in ocean and land phosphorites and from 0.02% to 1.30% in bone phosphate. Na content in most samples is higher relative to Na of NaCl due to its incorporation into the crystal lattice of apatite. However, the opposite relationship is observed in some samples indicating partial Cl incorporation into the anion complex of phosphate. Behavior of Cl in phosphorites from the present-day ocean floor is controlled by early diagenetic processes, whereas the role of weathering, catagenesis, and hydrogeological factors may be crucial for phosphorites on continents.