1000 resultados para CENTER-DOT-DMAC


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four new antimony sulphides, [T(dien)(2)]Sb6S10 center dot xH(2)O [T = Ni (1), Co (2) x approximate to 0.45], [Co(en)(3)]SbsSI(3) (3) and [Ni(en)(3)]Sb12S19 (4), have been synthesised under solvothermal conditions. In compounds (1) - (3), Sb12S228- secondary building units are connected to form layered structures. In (1) and (2), Sb-6 S-2- layers containing Sb16S16 heterorings are separated by [T(dien]2](2+) cations, whilst in (3), Sb8 S2- layers 10 13 contain [Co(en)3]2+ cations within large Sb22S22 pores. Compound (4) adopts a three-dimensional structure in which [Ni(en)3 12 cations lie within ca. 5 A wide channels. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A one-pot reaction of [Co(NO3)(2)center dot 6H(2)O and piperazine] with NH4SCN/NaSCN in water-methanol (1:1) solvent leads to two polymorphs of [Co(SCN)(4)(ppz-H)(2)] (ppz, piperazine) (I and II). X-ray crystal structure reveals both have same space group but the differences in the alignment of pendant SCN- leads to two polymorphs. In I, trifurcated N-H...S hydrogen bonding plays a prominent role in crystal packing leading to S...S interactions between SCN fragments but in II, no such trifurcation arises and thereby the crystal packing occurs through hydrogen bonding interactions only leading to a distinctly different network topology. TG/DSC and FT-IR study reveal they are enantiotropically related. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three new carboxylato-bridged polymeric networks of Mn-II having molecular formula [Mn(ox)(dpyo)](n) (1), {[Mn-2(mal)(2)(bpee)(H2O)(2)]center dot 0.5(bpee)center dot 0.5(CH3OH)}n, (2) and {[Mn-3(btc)(2)(2,2'-bipy)(2)(H2O)(6)]center dot 4H(2)O}(n) (3) [dpyo, 4,4'-bipyridine N,N'dioxide; bpee, trans-1,2 bis(4-pyridyl) ethylene; 2,2'-bipy, 2,2'-bipyridine; ox = oxalate dianion; mal = malonate dianion; btc = 1,3,5-benzenetricarboxylate trianion] have been synthesized and characterized by single-crystal X-ray diffraction studies and low temperature magnetic measurements. Structure determination of complex I reveals a covalent bonded 2D network containing bischelating oxalate and bridging dpyo; complex 2 is a covalent,bonded 3D polymeric architecture, formed by bridging malonate and bpee ligands, resulting in an open framework with channels filled by uncoordinated disordered bpee and methanol molecules. Whereas complex 3, comprising btc anions bound to three metal centers, is a 1D chain which further extends its dimensionality to 3D via pi-pi and H-bonding interactions. Low temperature magnetic measurements reveal the existence of weak antiferromagnetic interaction in all these complexes. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two cobalt complexes, [Co(L-Se)(phen)]center dot CH2Cl2 (1) and [Co(L-Se)(N,N-Me(2)en)(CH3COO-)] (2) have been synthesized and characterized by elemental analyses, magnetic measurements, i.r. studies etc. Single crystal X- ray studies reveal that in complex (1) cobalt atom is in +2 oxidation state with trigonal bipyramidal geometry, while in complex (2) it is in +3 oxidation state and surrounded octahedrally. The asymmetric unit of complex (2) contains two crystallographically independent discrete molecules. Complex (1) was found to be paramagnetic with mu(eff) = 2.19 BM indicating a low spin cobalt(II) d(7) system, whereas complex (2) is found to be diamagnetic with cobalt(III) in low spin d(6) state. The kinetic studies on the reduction of (2) by ascorbic acid in 80% MeCN-20% H2O (v/v) at 25 degrees C reveal that the reaction proceeds through the rapid formation of inner-sphere adduct, probably by replacing the loosely coordinated AcO- group, followed by electron transfer in a slow step and is supported by a large Q (formation constant) value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Six ruthenium(II) complexes have been prepared using the tridentate ligands 2,6-bis(benzimidazolyl) pyridine and bis(2-benzimidazolyl methyl) amine and having 2,2'-bipyridine, 2,2':6',2 ''-terpyridine, PPh3, MeCN and chloride as coligands. The crystal structures of three of the complexes trans-[Ru(bbpH(2))(PPh3)(2)(CH3CN)I(ClO4)(2) center dot 2H(2)O (2), [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy)](ClO4)(2) (4) are also reported. The complexes show visible region absorption at 402-517 nm, indicating that it is possible to tune the visible region absorption by varying the ancillary ligand. Luminescence behavior of the complexes has been studied both at RT and at liquid nitrogen temperature (LNT). Luminescence of the complexes is found to be insensitive to the presence of dioxygen. Two of the complexes [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy]ClO4)(2) (4) show RT emission in the NIR region, having lifetime, quantum yield and radiative constant values suitable for their application as NIR emitter in the solid state devices. The DFT calculations on these two complexes indicate that the metal t(2g) electrons are appreciably delocalized over the ligand backbone. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three di-Schiff-base ligands, N,N'-bis(salicylidene)-1,3-propanediamine (H(2)Salpn), N,N'-bis(salicylidene)-1,3-pentanedianiine (H(2)Salpen) and N,N'-bis(salicylidine)-ethylenediamine (H(2)Salen) react with Ni(SCN)(2). 4H(2)O in 2:3 molar ratios to form the complexes; mononuclear [Ni(HSalpn)(NCS)(H2O)]center dot H2O (1a), trinuclear [{Ni(Salpen)}(2)Ni(NCS)(2)] (2b) and trinuclear [{Ni(Salen)}(2)Ni(NCS)(2)] (3) respectively. All the complexes have been characterized by elemental analyses, IR and UV-VIS spectra, and room temperature magnetic susceptibility measurements. The structures of la and 2b have been confirmed by X-ray single crystal analysis. In complex la, the Ni(II) atom is coordinated equatorially by the tetradentate, mononegative Schiff-base, HSalpn. Axial coordination of isothiocyanate group and a water molecule completes its octahedral geometry. The hydrogen atom attached to one of the oxygen atoms of the Schiff base is involved in a very strong hydrogen bond with a neighboring unit to form a centrosymmetric dimer. In 2b, two square planar [Ni(Salpen)] units act as bide mate oxygen donor ligands to a central Ni(II) which is also coordinated by two mutually cis N-bonded thiocyanate ligands to complete its distorted octahedral geometry. Complex 3 possesses a similar structure to that of 2b. A dehydrated form of la and a hydrated form of 2b have been obtained and characterized. The importance of electronic and steric factors in the variation of the structures is discussed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four trinuclear Cu(II) complexes, [(CuL1)(3)(mu(3)-OH)](NO3)(2) (1), [(CuL2)(3)(mu(3)-OH)](I)(2)center dot H2O (2), [(CuL3)(3)(mu(3)-OH)](I)(2) (3) and [(CuL1)(3)(mu(3)-OH)][(CuI3)-I-1] (4), where HL1 (8-amino-4-methyl-5-azaoct-3-en-2-one), HL2 [7-amino-4-methyl-5-azaoct-3-en-2-one] and HL3 [7-amino-4-methyl-5-azahept-3-en-2- one] are the three tridentate Schiff bases, have been synthesized and structurally characterized by X-ray crystallography. All four complexes contain a partial cubane core, [(CuL)(3)(mu(3)-OH)](2+) in which the three [CuL] subunits are interconnected through two types of oxygen bridges afforded by the oxygen atoms of the ligands and the central OH- group. The copper(II) ions are in a distorted square-pyramidal environment. The equatorial plane consists of the bridging oxygen of the central OH- group together with three atoms (N, N, O) from the Schiff base. The oxygen atom of the Schiff base also coordinates to the axial position of Cu(II) of another subunit to form the cyclic trimer. Magnetic susceptibilities have been determined for these complexes over the temperature range of 2-300 K. The isotropic Hamiltonian, H = -J(12)S(1)S(2) - J(13)S(1)S(3) - J(23)S(2)S(3) has been used to interpret the magnetic data. The best fit parameters obtained are: J = - 54.98 cm(-1) g = 2.24 for 1; J = - 56.66 cm(-1), g = 2.19 for 2; J = -44.39 cm(-1), g = 2.16 for 3; J = - 89.92 cm(-1), g = 2.25 for 4. The EPR data at low temperature indicate that the phenomenon of spin frustration occurs for complexes 1-3. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Formation of a quasi-symmetrical mu(3)-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu(3)-CO3){Ni-2(salmeNH)(2)(NCS)(2)}[Ni(salmeNH(2))(2)]center dot Et2O center dot H2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH)(2)]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, (Ni(salmeNH)(2)], and one of the possible intermediate species, [Ni(salmeNH(2))(2)(NCS)(2)], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10(-4).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]center dot 2H(2)O (1) of mono-condensed tridentate Schiff base ligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the Nil, as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)(2)center dot 4H(2)O furnishing the complex [NiL(NCS)] (2) and with CuCl2 center dot 2H(2)O in the presence of NaN3 or NH4SCN producing [CuL(N-3)](2) (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)(2)center dot 6H(2)O and Cu(NO3)(2)center dot 3H(2)O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)(2)center dot 6H(2)O or Ni(NO3)(2)center dot 6H(2)O to yield [Ni(hap)(2)] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, Ni-II possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around Cu-II in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around Cu-II is square pyramidal. In both 5 and 6, the Cu-II atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A linear trinuclear Ni-Schiff base complex [Ni-3(salpen)(2)(PhCH2COO)(2)(EtOH)] has been synthesized by combining Ni(ClO4)(2)center dot 6H(2)O, phenyl acetic acid (C6H5CH2COOH), and the Schiff base ligand, N,N'-bis(salicylidene)-1,3-pentanediamine (H(2)salpen). This complex is self-assembled through hydrogen bonding and C-H-g interaction in the solid state to generate a sheet-like architecture, while in organic solvent (CH2Cl2), it forms vesicles with a mean diameter of 290 nm and fused vesicles, depending upon the concentration of the solution. These vesicles act as an excellent carrier of dye molecules in CH2Cl2. The morphology of the complex has been determined by scanning electron microscopy and transmission electron microscopy experiments, and the encapsulation of dye has been examined by confocal microscopic image and electronic absorption spectra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural and magnetic characterization of compound {[Ni-2(L)(2)(OAC)(2)][Ni-3(L)(2) (OAc)(4)]) center dot 2CH(3)CN (3) (HL = the tridentate Schiff base ligand, 2-[(3-methylaminb-propylimino)-methyl]-phenol) shows that it is a rare example of a crystal incorporating a dinuclear Ni(II) compound, [Ni-2(L)(2)(OAc)(2)], and a trinuclear one, [Ni-3(L)(2)(OAC)(4)]. Even more unusual is the fact that both Ni (II) complexes, [Ni-2(L)(2)(OAc)(2)] (1) and [Ni-3(L)(2)(OAc)(4)(H2O)(2)] center dot CH2Cl2 center dot 2CH(3)OH (2), have also been isolated and structurally and magnetically characterized. The structural analysis reveals that the dimeric complexes [Ni-2(L)(2)(OAc)(2)] in cocrystal 3 and in compound 1 are almost identical-in both complexes, the Ni(II) ions possess a distorted octahedral geometry formed by the chelating tridentate ligand (L), a chelating acetate ion, and a bridging phenoxo group with very similar bond angles and distances. On the other hand, compound 2 and the trinuclear complex in the cocrystal 3 show a similar linear centrosymmetric structure with the tridentate ligand coordinated to the terminal Ni(II) and linked to the central Ni(II) by phenoxo and carboxylate bridges. The only difference is that a water molecule found in 2 is not present in the trinuclear unit of complex 3; instead, the coordination sphere is completed by an additional bridging oxygen atom from an acetate ligand. Variable-temperature (2-300 K) magnetic susceptibility measurements show that the dinuclear unit is antiferromagnetically coupled in both compounds (2J = -36.18 and -29.5 cm(-1) in 1 and 3, respectively), whereas the trinuclear unit shows a very weak ferromagnetic coupling in compound 3 (2J = 0.23 cm(-1)) and a weak antiferromagnetic coupling in 2 (2J = -8.7(2) cm(-1)) due to the minor changes in the coordination sphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three new linear trinuclear nickel(II) complexes, [Ni-3(salpen)(2)(OAc)(2)(H2O)(2)]center dot 4H(2)O (1) (OAc = acetate, CH3COO-), [Ni-3(salpen)(2)(OBz)(2)] (2) (OBz=benzoate, PhCOO-) and [Ni-3(salpen)(2)(OCn)(2)(CH3CN)(2)] (4) (OCn = cinnamate, PhCH=CHCOO-), H(2)salpen = tetradentate ligand, N,N'-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni-3(salpen)(2)(OPh)(2)(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO-) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the syn-syn bridging bidentate mode of the carboxylate group remain the same in complexes 1-4, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2-300 K) magnetic susceptibility measurements show that complexes 1-4 are antiferromagnetically coupled (J = -3.2(1), -4.6(1). -3.2(1) and -2.8(1) cm(-1) in 1-4, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 1-4 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm(-1) for 1-4, respectively). The highest D value of +14.2(2) and +9.8(2) cm(-1) for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reaction of diiodine with cis-Ru(bpy)(2)Cl-2 in methanol at room temperature yields a thermally stable intercalate cis-Ru(bpy)(2)Cl-2 center dot 1.7I(2) (1) which has been characterised by X-ray crystallography. Iodine is leeched from 1 as it reacts with acetone at room temperature. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New Pd(II), Pt(II) and Re(V) complexes of 3-aminosalicylic acid (H(2)salNH(2)) and 3-hydroxyantranilic acid (HantOH) have been prepared, cis-[Pt (HsalNH)(PPh3)(2)] center dot 0.25C(2)H(5)OH (1), trans-[PdCl(salNH(2))(PPh3)(2)](2), trans-[ReOI2(HsalNH(2))(PPh3)] center dot (CH3)(2)CO (3), cis-[Pt(HantO)(PPh3)(2)] (4), trans-[PdCl(antOH)(PPh3)(2)] center dot 4H(2)O (5), [PdCl(antOH)(bipy)] center dot C2H5OH (6), [PdCl2(HantOH)(2)] (7) and trans-[ReOI(HantO)(PPh3)(2)] center dot (CH3)(2)CO (8). The crystal structure of complex I was determined showing chelation of HsalNH(2-) through the adjacent nitrogen and oxygen atoms of the amino and phenolate groups. Infrared and H-1 NMR spectroscopic data for the complexes are presented. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)