933 resultados para CELLULAR PRION
Resumo:
Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analog of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor, and by expressing a dominant-negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior.
Resumo:
Neuromodulation is essential to many functions of the nervous system. In the simple gastropod mollusk Aplysia californica, neuromodulation of the circuits for the defensive withdrawal reflexes has been associated with several forms of learning. In the present work, the neurotransmitters and neural circuitry which contribute to the modulation of the tail-siphon withdrawal reflex were examined.^ A recently-identified neuropeptide transmitter, buccalin A was found to modulate the biophysical properties of the sensory neurons that mediate the reflex. The actions of buccalin A on the sensory neurons were compared with those of the well-characterized modulatory transmitter serotonin, and convergence and divergence in the actions of these two transmitters were evaluated. Buccalin A dramatically increased the excitability of sensory neurons and occluded further enhancement of excitability by serotonin. Buccalin A produced no significant change in spike duration, and it did not block serotonin-induced spike broadening. Voltage-clamp analysis revealed the currents that may be involved in the effects on spike duration and excitability. Buccalin A decreased an outward current similar to the S-K$\sp+$ current (I$\sb{\rm K,S}$). Buccalin A appeared to occlude further modulation of I$\sb{\rm K,S}$ by serotonin, but did not block serotonin-induced modulation of the voltage-dependent delayed rectifier K$\sp+$ current (I$\sb{\rm K,V}$). These results suggest that buccalin A converges on some, but not all, of the same subcellular modulatory pathways as serotonin.^ In order to begin to understand neuromodulation in a more physiological context for the tail-siphon withdrawal reflex, the modulatory circuitry for the tail-withdrawal circuit was examined. Mechanoafferent neurons in the J cluster of the cerebral ganglion were identified as elements of a modulatory circuit for the reflex. Excitatory and inhibitory connections were observed between the J cells and the pleural sensory neurons, the tail motor neurons, and several classes of interneurons for the tail-siphon withdrawal circuit. The J cells produced both fast and slow PSPs in these neurons. Of particular interest was the ability of the J cells to produce slow EPSPs in the pleural sensory neurons. These slow EPSPs were associated with an increase in the excitability of the sensory neurons. The J cells appear to mediate both sensory and modulatory inputs to the circuit for the tail-siphon withdrawal reflex from the anterior part of the animal. ^
Resumo:
The origin and structure of P55$\sp{\rm gag},$ a gag encoded polyprotein lacking the nucleocapsid protein, NCp10, have been explored. Evidence shows that P55$\sp{\rm gag}$ is formed by non-viral proteolytic cleavage of the Moloney murine leukemia virus (MoMuLV)gag precursor protein, Pr65$\sp{\rm gag}.$ P55$\sp{\rm gag}$ is produced in cells infected by a viral protease deletion mutant and by a recombinant murine sarcoma virus known to lack the protease gene, implying that a cellular protease is responsible for the cleavage. Structural and immunological studies show that the protein cleavage site is upstream of the CAp30-NCp10 viral proteolytic junction, implying that P55$\sp{\rm gag}$ lacks the carboxy-terminal residues of CAp30. During the course of studying P55$\sp{\rm gag},$ another protein was discovered, which I named nucleocapsid-related protein(NCRP). NCRP possesses the portion of CAp30 that is lacking in P55$\sp{\rm gag}.$ NCRP possesses antigenic epitopes present in CAp30 and NCp10. NCRP was observed in virus lysates and in nuclear lysates of MoMuLV infected cells; it was not detected in the cytoplasmic fractions of MoMuLV infected cells. Our results indicated that NCRP originates from Pr65$\sp{\rm gag},$ resulting from the same cellular proteolytic cleavage event that produces the viral cellular protein P55$\sp{\rm gag}.$ P55$\sp{\rm gag}$- and NCRP-like proteins also were observed in AKV murine leukemia virus (AKV MuLV) and feline leukemia virus (FeLV) infected cells and in their respective virus particles. The site of cleavage that yields P55$\sp{\rm gag}$ and NCRP is within the carboxy terminus of CAp30, likely within a motif highly conserved among mammalian type C retroviruses. This new motif, called the capsid conserved motif (CCM), overlaps a region containing both a possible bipartite nuclear targeting sequence and a region homologous with the U1 small nuclear ribonucleoprotein 70-kD protein. This domain, when intact, may act as a nuclear targeting sequence for the gag precursor proteins Pr65$\sp{\rm gag}$ and CAp30. Nuclei of cells infected with MoMuLV were examined for the presence of gag proteins. Both Pr65$\sp{\rm gag}$ and CAp30 were detected in the nuclear fraction of MoMuLV, AKV MuLV and FeLV infected cells. P55$\sp{\rm gag}$ was never detected in the nucleus of MoMuLV, AKV MuLV and FeLV infected cells or in their respective virus particles. I propose that NCRP may be involved in sequestering viral genomic RNA for the purposes of encapsidation and intracellular viral genomic RNA dimerization. ^
Resumo:
The goal of this study was to investigate the cellular and molecular mechanisms by which glutathione (GSH) is involved in the process of apoptosis induced by cisplatin [cis-diamminedichloroplatinum(II), cis-DDP] in the HL60 human promyelocytic leukemia cell line. The data show that during the onset or induction of apoptosis, GSH levels in cisplatin-treated cells increased 50% compared to control cells. The increase in intracellular GSH was associated with enhanced expression of γ-glutamylcysteine synthetase (γ-GCS), the enzyme that catalyzes the rate- limiting step in the biosynthesis of glutathione. After depletion of intracellular GSH with D,L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of γ-GCS, biochemical and morphological analysis revealed that the mechanism of cell death had switched from apoptosis to necrosis. In contrast, when intracellular GSH was elevated by exposure of cells to a GSH-ethyl-ester and then treatment with cisplatin, no change in the induction and kinetics of apoptosis were observed. However, when cells were exposed to cisplatin before intracellular GSH levels were increased, apoptosis was observed to occur 6 hours earlier compared to cells without GSH elevation. To further examine the molecular aspects of these effects of GSH on the apoptotic process, changes in the expression of bcl-2 and bax, were investigated in cells with depleted and elevated GSH. Using reverse transcription polymerase chain reaction, no significant change in the expression of bcl-2 gene transcripts was observed in cells in either the GSH depleted or elevated state; however, a 75% reduction in GSH resulted in a 40% decrease in the expression of bax gene transcripts. In contrast, a 6-fold increase in GSH increased the expression of bax by 3-fold relative to controls. Similar results were obtained for bax gene expression and protein synthesis by northern analysis and immunoprecipitation, respectively. These results suggest that GSH serves a dual role in the apoptotic process. The first role which is indirect, involves the protection of the cell from extensive damage following exposure to a specific toxicant so as to prevent death by necrosis, possibly by interacting with the DNA damaging agent and/or its active metabolites. The second role involves a direct involvement of GSH in the apoptotic process that includes upregulation of bax expression. ^
Resumo:
Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding) or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis. Here we provide evidence that both mechanisms operate in tandem but fulfill diverse cellular needs. The prevalence of the repair strategy varies between cell types and is guided by the severity and the localization of the initial toxin-induced damage, by the morphology of a cell and, most important, by the incidence of the secondary mechanical damage. The surgically precise action of microvesicle shedding is best suited for the instant elimination of individual toxin pores, whereas lysosomal repair is indispensable for mending of self-inflicted mechanical injuries following initial plasmalemmal permeabilization by bacterial toxins. Our study provides new insights into the functioning of non-immune cellular defenses against bacterial pathogens.
Resumo:
Bacterial meningitis causes neurological sequelae in up to 50% of survivors. Two pathogens known for their propensity to cause severe neurological damage are Streptococcus pneumoniae and group B streptococci. Some forms of neuronal sequelae, such as learning and memory deficits, have been associated with neuronal injury in the hippocampus. To learn more about hippocampal injury in meningitis, we performed a comparative study in bacterial meningitis due to S. pneumoniae and group B streptococcus, in which 11-day-old infant rats were infected intracisternally with either of the two pathogens. Histopathological examination of the neuronal injury in the dentate gyrus of the hippocampus showed that S. pneumoniae caused predominantly classical apoptotic cell death. Cells undergoing apoptosis were located only in the subgranular zone and stained positive for activated caspase-3 and TUNEL. Furthermore, dividing progenitor cells seemed particularly sensitive to this form of cell death. Group B streptococcus was mainly responsible for a caspase-3-independent (and TUNEL-negative) form of cell death. Compared with the morphological features found in apoptosis (e.g., apoptotic bodies), this form of neuronal death was characterized by clusters of uniformly shrunken cells. It affected the dentate gyrus throughout the blade, showing no preferences for immature or mature neurons. Thus, depending on the infecting agent, bacterial meningitis causes two distinct forms of cell injury in the dentate gyrus.
Resumo:
The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells (HSC). Inhibition of receptor tyrosine kinase (RTK) signaling showed promise in the treatment of hepatocellular carcinoma. However, there is a lack of knowledge about the effects of RTK inhibitors on the tumor supportive cells. We performed in vitro experiments to study whether Sunitinib, a platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) RTKs' inhibitor, could block both activated HSC functions and angiogenesis and thus prevent the progression of cirrhotic liver to hepatocellular carcinoma. In immortalized human activated HSC LX-2, treatment with Sunitinib 100 nM blocked collagen synthesis by 47%, as assessed by Sirius Red staining, attenuated HSC contraction by 65%, and reduced cell migration by 28% as evaluated using a Boyden's chamber, without affecting cell viability, measured by Trypan blue staining, and apoptosis, measured by propidium iodide (PI) incorporation assay. Our data revealed that Sunitinib treatment blocked the transdifferentiation of primary human HSC (hHSC) to activated myofibroblast-like cells by 65% without affecting hHSC apoptosis and migration. In in vitro angiogenic assays, Sunitinib 100 nM reduced endothelial cells (EC) ring formation by 46% and tube formation by 68%, and decreased vascular sprouting in aorta ring assay and angiogenesis in vascular bed of chick embryo. In conclusion, the present study demonstrates that the RTK inhibitor Sunitinib blocks the activation of HSC and angiogenesis suggesting its potential as a drug candidate in pathological conditions like liver fibrosis and hepatocellular carcinoma.
Resumo:
Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.
Resumo:
The synthesis of three bis[(tert-butoxy)carbonyl]-protected (tetramine)dichloroplatinum complexes 2a – c of formula cis-[PtCl2(LL)] and of their cationic deprotected analogs 3a – c and their evaluation with respect to in vitro cytotoxicity, intramolecular stability, DNA binding, and cellular uptake is reported. The synthesis comprises the complexation of K2[PtCl4] with di-N-protected tetramines 1a – c to give 2a – c and subsequent acidolysis, yielding 3a – c. The cytotoxicity of the complexes is in direct relation to the length of the polyamine. Complexes 3a – c display a significant higher affinity for CT DNA as well as for cellular DNA in A2780 cells than cisplatin.
Resumo:
Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca2+ entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca2+ sequestration that prevents excessive Ca2+ elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca2+ signals in cells that were able to survive after PLY attack. Intracellular Ca2+ dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca2+ signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections.
Resumo:
Coumarins are extensively studied anticoagulants that exert additional effects such as anticancerogenic and even anti-inflammatory. In order to find new drugs with anticancer activities, we report here the synthesis and the structural analysis of new coumarin derivatives which combine the coumarin core and five member heterocycles in hydrazinylidene-chroman-2,4-diones. The derivatives were prepared by derivatization of the appropriate heterocyclic amines which were used as electrophiles to attack the coumarin ring. The structures were characterized by spectroscopic techniques including IR, NMR, 2D-NMR and MS. These derivatives were further characterized especially in terms of a potential cytotoxic and apoptogenic effect in several cancer cell lines including the breast and prostate cancer cell lines MCF-7, MDA-MB-231, PC-3, LNCaP, and the monocytic leukemia cell line U937. Cell viability was determined after 48 h and 72 h of treatment with the novel compounds by MTT assay and the 50% inhibitory concentrations (EC50 values) were determined. Out of the 8 novel compounds screened for reduced cell viability, 4c, 4d and 4e were found to be the most promising and effective ones having EC50 values that were several fold reduced when compared to the reference substance 4-hydroxycoumarin. However, the effects were cancer cell line dependent. The breast cancer MDA-MB-231 cells, the prostate cancer LNCaP cells, and U937 cells were most sensitive, MCF-7 cells were less sensitive, and PC-3 cells were more resistant. Reduced cell viability was accompanied by increased apoptosis as shown by PARP-1 cleavage and reduced activity of the survival protein kinase Akt. In summary, this study has identified three novel coumarin derivatives that in comparison to 4-hydroxycoumarin have a higher efficiency to reduce cancer cell viability and trigger apoptosis and therefore may represent interesting novel drug candidates