941 resultados para CCAAT enhancer binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agonists stimulate guanylyl 5'-[gamma-[35S]thio]-triphosphate (GTP[gamma-35S]) binding to receptor-coupled guanine nucleotide binding protein (G proteins) in cell membranes as revealed in the presence of excess GDP. We now report that this reaction can be used to neuroanatomically localize receptor-activated G proteins in brain sections by in vitro autoradiography of GTP[gamma-35S] binding. Using the mu opioid-selective peptide [D-Ala2,N-MePhe4,Gly5-ol]enkephalin (DAMGO) as an agonist in rat brain sections and isolated thalamic membranes, agonist stimulation of GTP[gamma-35S] binding required the presence of excess GDP (1-2 mM GDP in sections vs. 10-30 microM GDP in membranes) to decrease basal G-protein activity and reveal agonist-stimulated GTP[gamma-35S] binding. Similar concentrations of DAMGO were required to stimulate GTP[gamma-35S] binding in sections and membranes. To demonstrate the general applicability of the technique, agonist-stimulated GTP[gamma-35S] binding in tissue sections was assessed with agonists for the mu opioid (DAMGO), cannabinoid (WIN 55212-2), and gamma-aminobutyric acid type B (baclofen) receptors. For opioid and cannabinoid receptors, agonist stimulation of GTP[gamma-35S] binding was blocked by incubation with agonists in the presence of the appropriate antagonists (naloxone for mu opioid and SR-141716A for cannabinoid), thus demonstrating that the effect was specifically receptor mediated. The anatomical distribution of agonist-stimulated GTP[gamma-35S] binding qualitatively paralleled receptor distribution as determined by receptor binding autoradiography. However, quantitative differences suggest that variations in coupling efficiency may exist between different receptors in various brain regions. This technique provides a method of functional neuroanatomy that identifies changes in the activation of G proteins by specific receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ran, a small nuclear GTP binding protein, is essential for the translocation of nuclear proteins through the nuclear pore complex. We show that several proteins, including the Saccharomyces cerevisiae Nup2p and Caenorhabditis elegans F59A2.1 nucleoporins, contain domains similar to the previously characterized murine Ran binding protein (RBP, termed RBP1). To test the significance of this similarity, we have used the corresponding domains of Nup2p and a putative S. cerevisiae RBP in Ran binding assays and the yeast two-hybrid system. Both proteins bind S. cerevisiae Ran, but only the putative S. cerevisiae RBP binds human Ran. Two-hybrid analysis revealed Ran-Ran interactions and that yeast and human Rans can interact. These data identify Nup2p as a target for Ran in the nuclear pore complex, suggesting a direct role for it in nuclear-cytoplasmic transport. We discuss the possibility that proteins harboring Ran binding domains link the Ran GTPase cycle to specific functions in the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Open reading frames in the Plasmodium falciparum genome encode domains homologous to the adhesive domains of the P. falciparum EBA-175 erythrocyte-binding protein (eba-175 gene product) and those of the Plasmodium vivax and Plasmodium knowlesi Duffy antigen-binding proteins. These domains are referred to as Duffy binding-like (DBL), after the receptor that determines P. vivax invasion of Duffy blood group-positive human erythrocytes. Using oligonucleotide primers derived from short regions of conserved sequence, we have developed a reverse transcription-PCR method that amplifies sequences encoding the DBL domains of expressed genes. Products of these reverse transcription-PCR amplifications include sequences of single-copy genes (including eba-175) and variably transcribed genes that cross-hybridize to multiple regions of the genome. Restriction patterns of the multicopy genes show a high degree of polymorphism among different parasite lines, whereas single-copy genes are generally conserved. Characterization of the single-copy genes has identified a gene (ebl-1) that is related to eba-175 and is likely to be involved in erythrocyte invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of DNA technology to regulate the transcription of disease-related genes in vivo has important therapeutic potentials. The transcription factor E2F plays a pivotal role in the coordinated transactivation of cell cycle-regulatory genes such as c-myc, cdc2, and the gene encoding proliferating-cell nuclear antigen (PCNA) that are involved in lesion formation after vascular injury. We hypothesized that double-stranded DNA with high affinity for E2F may be introduced in vivo as a decoy to bind E2F and block the activation of genes mediating cell cycle progression and intimal hyperplasia after vascular injury. Gel mobility-shift assays showed complete competition for E2F binding protein by the E2F decoy. Transfection with E2F decoy inhibited expression of c-myc, cdc2, and the PCNA gene as well as vascular smooth muscle cell proliferation both in vitro and in the in vivo model of rat carotid injury. Furthermore, 2 weeks after in vivo transfection, neointimal formation was significantly prevented by the E2F decoy, and this inhibition continued up to 8 weeks after a single transfection in a dose-dependent manner. Transfer of an E2F decoy can therefore modulate gene expression and inhibit smooth muscle proliferation and vascular lesion formation in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a protein kinase, Shk1, from the fission yeast Schizosaccharomyces pombe, which is structurally related to the Saccharomyces cerevisiae Ste20 and mammalian p65PAK protein kinases. We provide genetic evidence for physical and functional interaction between Shk1 and the Cdc42 GTP-binding protein required for normal cell morphology and mating in S. pombe. We further show that expression of the STE20 gene complements the shk1 null mutation and that Shk1 is capable of signaling to the pheromone-responsive mitogen-activated protein kinase cascade in S. cerevisiae. Our results lead us to propose that signaling modules composed of small GTP-binding proteins and protein kinases related to Shk1, Ste20, and p65PAK, are highly conserved in evolution and participate in both cytoskeletal functions and mitogen-activated protein kinase signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified a class of proteins that bind single-stranded telomeric DNA and are required for the nuclear organization of telomeres and/or telomere-associated proteins. Rlf6p was identified by its sequence similarity to Gbp1p, a single-stranded telomeric DNA-binding protein from Chlamydomonas reinhardtii. Rlf6p and Gbp1p bind yeast single-stranded G-strand telomeric DNA. Both proteins include at least two RNA recognition motifs, which are found in many proteins that interact with single-stranded nucleic acids. Disruption of RLF6 alters the distribution of repressor/activator protein 1 (Rap1p), a telomere-associated protein. In wild-type yeast cells, Rap1p localizes to a small number of perinuclear spots, while in rlf6 cells Rap1p appears diffuse and nuclear. Interestingly, telomere position effect and telomere length control, which require RAP1, are unaffected by rlf6 mutations, demonstrating that Rap1p localization can be uncoupled from other Rap1p-dependent telomere functions. In addition, expression of Chlamydomonas GBP1 restores perinuclear, punctate Rap1p localization in rlf6 mutant cells. The functional complementation of a fungal gene by an algal gene suggests that Rlf6p and Gbp1p are members of a conserved class of single-stranded telomeric DNA-binding proteins that influence nuclear organization. Furthermore, it demonstrates that, despite their unusual codon bias, C. reinhardtii genes can be efficiently translated in Saccharomyces cerevisiae cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleotide sequences of four genes encoding Trimeresurus gramineus (green habu snake, crotalinae) venom gland phospholipase A2 (PLA2; phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) isozymes were compared internally and externally with those of six genes encoding Trimeresurus flavoviridis (habu snake, crotalinae) venom gland PLA2 isozymes. The numbers of nucleotide substitutions per site (KN) for the noncoding regions including introns were one-third to one-eighth of the numbers of nucleotide substitutions per synonymous site (KS) for the protein-coding regions of exons, indicating that the noncoding regions are much more conserved than the protein-coding regions. The KN values for the introns were found to be nearly equivalent to those of introns of T. gramineus and T. flavoviridis TATA box-binding protein genes, which are assumed to be a general (nonvenomous) gene. Thus, it is evident that the introns of venom gland PLA2 isozyme genes have evolved at a similar rate to those of nonvenomous genes. The numbers of nucleotide substitutions per nonsynonymous site (KA) were close to or larger than the KS values for the protein-coding regions in venom gland PLA2 isozyme genes. All of the data combined reveal that Darwinian-type accelerated evolution has universally occurred only in the protein-coding regions of crotalinae snake venom PLA2 isozyme genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genes containing the interferon-stimulated response element (ISRE) enhancer have been characterized as transcriptionally responsive primarily to type I interferons (IFN alpha/beta). Induction is due to activation of a multimeric transcription factor, interferon-stimulated gene factor 3 (ISGF3), which is activated by IFN alpha/beta but not by IFN gamma. We found that ISRE-containing genes were induced by IFN gamma as well as by IFN alpha in Vero cells. The IFN gamma response was dependent on the ISRE and was accentuated by preexposure of cells to IFN alpha, a treatment that increases the abundance of ISGF3 components. Overexpression of ISGF3 polypeptides showed that the IFN gamma response depended on the DNA-binding protein ISGF3 gamma (p48) as well as on the 91-kDa protein STAT91 (Stat1 alpha). The transcriptional response to IFN alpha required the 113-kDa protein STAT113 (Stat2) in addition to STAT91 and p48. Mutant fibrosarcoma cells deficient in each component of ISGF3 were used to confirm that IFN gamma induction of an ISRE reporter required p48 and STAT91, but not STAT113. A complex containing p48 and phosphorylated STAT91 but lacking STAT113 bound the ISRE in vitro. IFN gamma-induced activation of this complex, preferentially formed at high concentrations of p48 and STAT91, may explain some of the overlapping responses to IFN alpha and IFN gamma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saccharomyces cerevisiae responds to DNA damage by arresting cell cycle progression (thereby preventing the replication and segregation of damaged chromosomes) and by inducing the expression of numerous genes, some of which are involved in DNA repair, DNA replication, and DNA metabolism. Induction of the S. cerevisiae 3-methyladenine DNA glycosylase repair gene (MAG) by DNA-damaging agents requires one upstream activating sequence (UAS) and two upstream repressing sequences (URS1 and URS2) in the MAG promoter. Sequences similar to the MAG URS elements are present in at least 11 other S. cerevisiae DNA repair and metabolism genes. Replication protein A (Rpa) is known as a single-stranded-DNA-binding protein that is involved in the initiation and elongation steps of DNA replication, nucleotide excision repair, and homologous recombination. We now show that the MAG URS1 and URS2 elements form similar double-stranded, sequence-specific, DNA-protein complexes and that both complexes contain Rpa. Moreover, Rpa appears to bind the MAG URS1-like elements found upstream of 11 other DNA repair and DNA metabolism genes. These results lead us to hypothesize that Rpa may be involved in the regulation of a number of DNA repair and DNA metabolism genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A human cDNA expression library was used to investigate the nature of molecules recognized by serum from a patient with Sjögren syndrome that exhibits a mixed immunofluorescence pattern and reacts with multiple components on an immunoblot. The data demonstrated that this serum contains IgG antibodies specific for the 70- and 32-kDa subunits of replication protein A (RPA; RPA-70 and RPA-32, respectively), a highly conserved multisubunit DNA binding protein. Affinity purification of serum autoantibodies demonstrated a complete lack of cross-reactivity between RPA-70 and RPA-32, suggesting a direct participation of the native protein complex in the autoimmune response in this patient. Purified anti-RPA-70 and anti-RPA-32 antibodies labeled nuclear and cytoplasmic components in an immunofluorescence assay, suggesting that RPA is present in both cellular compartments. Additional sera from 55 patients with different autoimmune conditions were screened against purified RPA-70 and RPA-32 recombinant proteins. One of these 55 sera was positive and reacted with only RPA-32. Twenty sera from healthy control individuals did not react with RPA. These results show that RPA is a target for autoantibodies in human autoimmune diseases, although its precise frequency, occurrence in other autoimmune diseases, and pathological significance remain to be fully elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The p53 protein activates transcription of a target gene by binding to a specific DNA response element and interacting with the transcriptional apparatus of RNA polymerase II. The amino-terminal domain of p53 interacts with a component of the TFIID basal transcription complex. The human TATA-binding-protein-associated factor TAFII31, a component of TFIID, has been identified as a critical protein required for p53-mediated transcriptional activation. TAFII31 and p53 proteins bind to each other via amino acid residues in the amino-terminal domain of p53 that are essential for transcription. Antibodies directed against TAFII31 protein inhibit p53-activated but not basal transcription in vitro. These results demonstrate that TAFII31 is a coactivator for the p53 protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small GTP-binding proteins play a critical role in the regulation of a range of cellular processes--including growth, differentiation, and intracellular transportation. Previously, we isolated a gene, rgp1, encoding a small GTP-binding protein, by differential screening of a rice cDNA library with probe DNAs from rice tissues treated with or without 5-azacytidine, a powerful inhibitor of DNA methylation. To determine the physiological role of rgp1, the coding region was introduced into tobacco plants. Transformants, with rgp1 in either sense or antisense orientations, showed distinct phenotypic changes with reduced apical dominance, dwarfism, and abnormal flower development. These abnormal phenotypes appeared to be associated with the higher levels of endogenous cytokinins that were 6-fold those of wild-type plants. In addition, the transgenic plants produced salicylic acid and salicylic acid-beta-glucoside in an unusual response to wounding, thus conferring increased resistance to tobacco mosaic virus infection. In normal plants, the wound- and pathogen-induced signal-transduction pathways are considered to function independently. However, the wound induction of salicylic acid in the transgenic plants suggests that expression of rgp1 somehow interfered with the normal signaling pathways and resulted in cross-signaling between these distinct transduction systems. The results imply that the defense signal-transduction system consists of a complicated and finely tuned network of several regulatory factors, including cytokinins, salicylic acid, and small GTP-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient expression of the retinoblastoma protein (Rb) regulates the transcription of a variety of growth-control genes, including c-fos, c-myc, and the gene for transforming growth factor beta 1 via discrete promoter sequences termed retinoblastoma control elements (RCE). Previous analyses have shown that Sp1 is one of three RCE-binding proteins identified in nuclear extracts and that Rb functionally interacts with Sp1 in vivo, resulting in the "superactivation" of Sp1-mediated transcription. By immunochemical and biochemical criteria, we report that an Sp1-related transcription factor, Sp3, is a second RCE-binding protein. Furthermore, in transient cotransfection assays, we report that Rb "superactivates" Sp3-mediated RCE-dependent transcription in vivo and that levels of superactivation are dependent on the trans-activator (Sp1 or Sp3) studied. Using expression vectors carrying mutated Rb cDNAs, we have identified two portions of Rb required for superactivation: (i) a portion of the Rb "pocket" (amino acids 614-839) previously determined to be required for physical interactions between Rb and transcription factors such as E2F-1 and (ii) a novel amino-terminal region (amino acids 140-202). Since both of these regions of Rb are targets of mutation in human tumors, our data suggest that superactivation of Sp1/Sp3 may play a role in Rb-mediated growth suppression and/or the induction of differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6. (C) 2003 Elsevier Inc. All rights reserved.