908 resultados para Broiler chicken
Resumo:
Monoclonal antibodies were raised against purified chicken retinol-binding protein. These were characterised extensively with respect to their ability to recognize retinol-binding proteins from different species. The monoclonal antibodies exhibited differential recognition characteristics. Though the majority presented restricted reactivities, one out of the four monoclonal antibodies studied cross-reacted with retinol-binding proteins from all species tested so far.
Resumo:
Polyphenolic compounds occurring naturally in knotwood of plants are known to have antimicrobial effects. The knots (i.e. the branch bases inside tree stems) and outer branches in pine trees contain a remarkably high concentration of phenolic stilbenes, while lignans are the major phenolic constituents of spruce knots. Large amount of these phenolic compounds can be extracted from wood knots at pulp and paper mills where their presence is undesirable. In Finland, marinating of broiler meat is done not only to increase or add value to the meat, but also to enhance the safety and shelf-life. These products are usually packed under a modified atmosphere for further protection against spoilage microorganisms. However, studies have revealed that addition of marinades to poultry products do not have an inhibitory effect on either some psychrotrophic anaerobic bacteria, such as Brochothrix thermosphacta or lactic acid bacteria associated with spoilage. Also, the activity of pathogenic Campylobacter jejuni is not affected by marinating. The objective of this study was to investigate the inhibitory and lethal activities of extracts from spruce (Picea spp.) and pine (Pinus spp.) knotwood and outer branches that are dissolved in ethanol against the spoilage microorganisms in modified atmosphere packaged marinated broiler products. Modified atmosphere packaged broiler products were separately inoculated with ‘normal’ marinades, marinades with 70% ethanol, marinades with a mixture of spruce and pine extracts dissolved in 70% ethanol or mixture of spruce and pine extracts in powder form. The bacterial colony forming units per gram obtained from each of the samples were analysed on de Man Rogosa and Sharpe agar at days 1, 6, 12 and 15. The results showed that there were significant differences in bacterial colony forming units per gram (P <0.05) between packages with ‘normal’ marinades and packages with extracts added to their marinades on the 12th and 15th day. It can be concluded that the addition of extracts from spruce and pine knotwood to marinades significantly retarded growth of spoilage microorganisms during the 15 day test period. However further research is warranted to characterise and establish the safety and suitability of the compound(s) in spruce and pine knotwood extracts that are responsible for inhibitory or lethal activity against the microbes that may be present in marinated poultry meat.
Resumo:
Suolistopatogeeniset Escherichia coli -bakteerit eli ripulikolit aiheuttavat ihmisellä suolistoinfektioita. Kuten normaalimikrobiston E. coli -bakteerit, ne esiintyvät ihmisen lisäksi muiden nisäkkäiden, etenkin märehtijöiden, ja lintujen suolistossa. Lisäksi ne voivat esiintyä maaperässä ja vesistöissä. Ihminen voi saada tartunnan eläinperäisten elintarvikkeiden välityksellä tai juomalla eläinten tai ihmisen ulosteilla saastunutta vettä. Ripulikolit voidaan jakaa ainakin viiteen ryhmään perustuen niiden erilaisiin virulenssiominaisuuksiin: enteropatogeeninen E. coli (EPEC), enterotoksigeeninen E. coli (ETEC), enterohemorraaginen E. coli (EHEC), enteroinvasiivinen E. coli (EIEC) ja enteroaggregatiivinen E. coli (EAEC). EPEC aiheuttaa etenkin kehitysmaissa pikkulapsille ripulia. ETEC aiheuttaa turistiripulia ja vastasyntyneiden ripulia kehitysmaissa. EHEC aiheuttaa ripulia tai veriripulia, joka voi varsinkin pienillä lapsilla johtaa hemolyyttis-ureemiseen oireyhtymään (HUS) ja munuaisten vaurioitumiseen. EIEC aiheuttaa Shigellan kaltaista ripulia, joka voi olla veristä. EAEC on yhdistetty lähinnä pitkittyneisiin ripuleihin. Tutkimuksessa selvitettiin suolistopatogeenisten E. coli -bakteerien esiintyvyyttä Burkina Fasossa, josta ei ole saatavilla aikaisempaa tietoa ripulikolien esiintymisestä ihmisissä ja elintarvikkeissa. Ulostenäytteitä otettiin ripulia sairastavilta alle viisivuotiailta lapsilta maaseudulta kahdesta kylästä, Boromosta ja Gourcysta, ja maan pääkaupungista Ouagadougousta (110 näytettä). Lihanäytteitä (kanaa, nautaa, lammasta ja naudan suolta, jota käytetään ihmisravinnoksi) otettiin Ouagadougoun toreilla myytävistä kypsentämättömistä lihoista (120 näytettä). Näytteistä saadut bakteerisekaviljelmät tutkittiin monialukkeisella PCR-menetelmällä, joka tunnistaa viiden ripulikoliryhmän virulenssigeenejä. Lisäksi lihanäytteistä eristettiin 20 EHEC-kantaa shigatoksiinin stx-geenin havaitsemiseen perustuvalla pesäkehybridisaatiolla ja PCR-seulonnalla, ja karakterisoitiin mahdollisten virulenssiominaisuuksien selvittämiseksi. Tutkimus osoitti, että ripulikolien aiheuttamat suolistoinfektiot ovat yleisiä ripulia sairastavilla pikkulapsilla Burkina Fasossa. Ulostenäytteistä 59 % oli positiivisia. Useimmiten lapsilla esiintyi EAEC- (32 %) ETEC- (31 %) ja EPEC-patoryhmiä (20 %). EIEC- (2 %) ja EHEC-patoryhmiä (1 %) esiintyi vähän. Myös useamman patoryhmän sekainfektiot olivat yleisiä (24 %). Eri paikkakuntien välillä oli tilastollisesti merkitseviä eroja ripulikolien esiintymisessä. Gourcyssa ripulikoleja esiintyi useammin kuin Ouagadougoussa ja Boromossa. Tutkimuksessa kävi ilmi, että Ouagadougoun toreilla myytävissä lihoissa on paljon ripulikoleja. Lihanäytteistä 43 % oli positiivisia. Yleisimmin lihoissa esiintyi EHEC (28 %), EPEC (20 %), ETEC (8 %) ja EAEC (5 %). EIEC-ryhmää ei havaittu lihoissa. Myös useamman patoryhmän sekakontaminaatioita löytyi (17 %) lihoista. Ripulikolien esiintyvyydessä eri lihojen välillä ei ollut tilastollisesti merkitseviä eroja, kun tarkasteltiin kaikkia patoryhmiä yhdessä. Eri patoryhmien esiintyvyyttä tarkasteltaessa EHEC-patoryhmää ei esiintynyt ollenkaan kanassa ja ero oli tilastollisesti merkitsevä muihin lihoihin verrattuna. Lihoista eristetyt 20 EHEC-kantaa kuuluivat 14 eri serotyyppiin, joista osa on aikaisemmin eristetty suolistoinfektioihin ja HUSoireyhtymään sairastuneilta ihmisiltä. Kaikki kannat olivat stx1-positiivisia ja puolella oli lisäksi stx2-geeni, jota pidetään shigatoksiinin virulentimpana muotona. Kahdelta EHEC-kannalta löytyi myös ETECpatoryhmän lämpöstabiilin enterotoksiini Ia:n geeni eli kannat olivat kahden patoryhmän välimuotoa ja osoitus geenien siirtymisestä eri patoryhmien välillä. Vaikka nuorimmat näytteen antaneet lapsipotilaat tuskin söivät lihaa, sen voidaan ajatella silti olevan edustava näyte lasten elinympäristöstä, sillä lasten ruoka valmistetaan usein samoissa oloissa, joissa raakaa lihaa käsitellään. Saastunut liha voi siten olla pikkulasten ripulikoli-infektioiden aiheuttaja.
Resumo:
The topological disposition of Wolfgram proteins (WP) and their relationship with 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in human, rat, sheep, bovine, guinea pig and chicken CNS myelin was investigated. Controlled digestion of myelin with trypsin gave a 35KDa protein band (WP-t) when electrophoresed on dodecyl sulfate-polyacrylamide gel in all species. Western blot analysis showed that the WP-t was derived from WP. WP-t was also formed when rat myelin was treated with other proteases such as kallikrein, thermolysin and leucine aminopeptidase. Staining for CNPase activity on nitrocellulose blots showed that WP-t is enzymatically active. Much of the CNPase activity remained with the membrane fraction even after treatment with high concentrations of trypsin when WP were completely hydrolysed and no protein bands with M.W > 14KDa were detected on the gels. Therefore protein fragments of WP with M.W < 14KDa may contain CNPase activity. From these results, it is suggested that the topological disposition of all the various WP is such that a 35KDa fragment is embedded in the lipid bilayer and the remaining fragment exposed at the intraperiod line in the myelin structure which may play a role in the initiation of myelinogenesis.
Resumo:
A specific protein exhibiting immunological cross-reactivity with chicken riboflavin carrier protein has been purified to homogeneity from human amniotic fluid by use of ion-exchange and affinity chromatography. The protein is similar to its avian counterpart in terms of molecular size, distribution of 125I-labelled tryptic peptides during finger printing, and preferential binding to riboflavin. Immunologically, they are homologous since most of the monoclonal antibodies raised against the avian protein cross-react with the purified human vitamin carrier.
Resumo:
Monoclonal antibodies (mAbs) to chicken thiamin carrier protein (TCP) have been produced by hybridoma technology to identify the crucial epitopes involved in bioneutralization of the vitamin carrier. The monoclonality of these mAbs (A4C4, F3H6, H8H3, C8C1 and G7H10) was sought to be confirmed by sub-class isotyping; they all belong to IgG1, k type. The epitopes recognized by all the five mAbs are conserved in TCP from the chicken to the rat as assessed by liquid phase RIA and immunoprecipitation of I-125-labelled proteins from pregnant rat serum. Among these mAbs, passive immunization of pregnant rats with the mAb C8C1 only on three consecutive days (day 10, 11 and 12) resulted in embryonic resorption. These results demonstrate the importance of epitopic structure specified by the mAb C8C1 on TCP during pregnancy in rats.
Resumo:
The unfolding of the chicken egg white riboflavin carrier protein by disulfide reduction with dithiothreitol led to aggregation with concomitant loss of ligand binding characteristics and the capacity to interact with six monoclonal antibodies directed against surface-exposed discontinuous epitopes. The reduced protein could, however, bind to a monoclonal antibody recognizing sequential epitope. Under optimal conditions of protein refolding, the vitamin carrier protein regained its folded structure with high efficiency with simultaneous complete restoration of hydrophobic flavin binding site as well as the epitopic conformations exposed at the surface in a manner comparable to its native form.
Resumo:
Starting with the Levinthal paradox, a brief introduction to the protein folding problem is presented. The existing theories of protein folding, including the folding funnel scenario, are discussed. After briefly discussing different simulation studies of model proteins, we discuss our recent work on the dynamics of folding of the model HP-36 (the chicken villin headpiece) protein by using a simplified hydropathy scale. Special attention has been paid to the statics and dynamics of contact formation among the hydrophobic residues. The results obtained from this simple model appear to be surprisingly similar to several features observed in the folding of real proteins. The account concludes with a discussion of future problems.
Resumo:
Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these ``slow'' water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface.
Resumo:
We demonstrate the phase fluctuation introduced by oscillation of scattering centers in the focal volume of an ultrasound transducer in an optical tomography experiment has a nonzero mean. The conditions to be met for the above are: (i) the frequency of the ultrasound should be in the vicinity of the most dominant natural frequency of vibration of the ultrasound focal volume, (ii) the corresponding acoustic wavelength should be much larger than l(n)*, a modified transport mean-free-path applicable for phase decorrelation and (iii) the focal volume of the ultrasound transducer should not be larger than 4 - 5 times (l(n)*)(3). We demonstrate through simulations that as the ratio of the ultrasound focal volume to (l(n)*)(3) increases, the average of the phase fluctuation decreases and becomes zero when the focal volume becomes greater than around 4(l(n)*)(3); and through simulations and experiments that as the acoustic frequency increases from 100 Hz to 1 MHz, the average phase decreases to zero. Through experiments done in chicken breast we show that the average phase increases from around 110 degrees to 130 degrees when the background medium is changed from water to glycerol, indicating that the average of the phase fluctuation can be used to sense changes in refractive index deep within tissue.
Resumo:
Elucidation of possible pathways between folded (native) and unfolded states of a protein is a challenging task, as the intermediates are often hard to detect. Here, we alter the solvent environment in a controlled manner by choosing two different cosolvents of water, urea, and dimethyl sulfoxide (DMSO) and study unfolding of four different proteins to understand the respective sequence of melting by computer simulation methods. We indeed find interesting differences in the sequence of melting of alpha helices and beta sheets in these two solvents. For example, in 8 M urea solution, beta-sheet parts of a protein are found to unfold preferentially, followed by the unfolding of alpha helices. In contrast, 8 M DMSO solution unfolds alpha helices first, followed by the separation of beta sheets for the majority of proteins. Sequence of unfolding events in four different alpha/beta proteins and also in chicken villin head piece (HP-36) both in urea and DMSO solutions demonstrate that the unfolding pathways are determined jointly by relative exposure of polar and nonpolar residues of a protein and the mode of molecular action of a solvent on that protein.
Resumo:
In continuation of our interest in pyrazole based multifunctional metal-organic frameworks (MOFs), we report herein the construction of a series of Co(II) MOFs using a bis-pyrazole ligand and various benzene polycarboxylic acids. Employment of different acids has resulted in different architectures ranging from a two-dimensional grid network, porous nanochannels with interesting double helical features such as supramolecular chicken wire, to three-dimensional diamondoid networks. One of the distinguishing features of the network is their larger dimensions which can be directly linked to a relatively larger size of the ligand molecule. Conformational flexibility of the ligand also plays a decisive role in determining both the dimensionality and topology of the final structure. Furthermore, chirality associated with helical networks and magnetic properties of two MOFs have also been investigated.
Resumo:
The protein folding funnel paradigm suggests that folding and unfolding proceed as directed diffusion in a multidimensional free energy surface where a multitude of pathways can be traversed during the protein's sojourn from initial to final state. However, finding even a single pathway, with the detail chronicling of intermediates, is an arduous task. In this work we explore the free energy surface of unfolding pathway through umbrella sampling, for a small globular a-helical protein chicken-villin headpiece (HP-36) when the melting of secondary structures is induced by adding DMSO in aqueous solution. We find that the unfolding proceeds through the initial separation or melting of aggregated hydrophobic core that comprises of three phenylalanine residues (Phe7, Phe11, and Phe18). This separation is accompanied by simultaneous melting of the second helix. Unfolding is found to be a multistage process involving crossing of three consecutive minima and two barriers at the initial stage. At a molecular level, Phe18 is observed to reorient itself towards other hydrophobic grooves to stabilize the intermediate states. We identify the configuration of the intermediates and correlate the intermediates with those obtained in our previous works. We also give an estimate of the barriers for different transition states and observe the softening of the barriers with increasing DMSO concentration. We show that higher concentration of DMSO tunes the unfolding pathway by destabilizing the third minimum and stabilizing the second one, indicating the development of a solvent modified, less rugged pathway. The prime outcome of this work is the demonstration that mixed solvents can profoundly transform the nature of the energy landscape and induce unfolding via a modified route. A successful application of Kramer's rate equation correlating the free energy simulation results shows faster rate of unfolding with increasing DMSO concentration. This work perhaps presents the first systematic theoretical study of the effect of a chemical denaturant on the microscopic free energy surface and rates of unfolding of HP-36. (C) 2014 AIP Publishing LLC.
Resumo:
Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (similar to 80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of similar to 2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water < dM(W) (0)delta M-W (t) > is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (similar to 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work. (C) 2014 AIP Publishing LLC.
Resumo:
Surface electrodes in Electrical Impedance Tomography (EIT) phantoms usually reduce the SNR of the boundary potential data due to their design and development errors. A novel gold sensors array with high geometric precision is developed for EIT phantoms to improve the resistivity image quality. Gold thin films are deposited on a flexible FR4 sheet using electro-deposition process to make a sixteen electrode array with electrodes of identical geometry. A real tissue gold electrode phantom is developed with chicken tissue paste and the fat cylinders as the inhomogeneity. Boundary data are collected using a USB based high speed data acquisition system in a LabVIEW platform for different inhomogeneity positions. Resistivity images are reconstructed using EIDORS and compared with identical stainless steel electrode systems. Image contrast parameters are calculated from the resistivity matrix and the reconstructed images are evaluated for both the phantoms. Image contrast and image resolution of resistivity images are improved with gold electrode array.