971 resultados para Bridges,
Resumo:
The French-language prose works of Ying Chen re-examine the idea of absolute cultural cores of being and belonging which has traditionally been associated with Chinese overseas literature. Her concept of identity, constantly in the process of becoming, can be understood through the various ways in which her own, and her characters', ‘between-world’ consciousness is expressed, namely through the portrayal of migration, the metaphors of shores and bridges, the themes of attachment and detachment, and the discussion of physical displacement and inner exile. The author's theories on literary language, too, focus on in-between spaces, such as that between the real and the probable.
Resumo:
The ‘Dublin Blaschka Congress’ was conceived as a gathering to bring together the diverse scholarly disciplines that are uniquely, if eccentrically, joined in the study of scientific glass models. Leopold and Rudolf Blaschka are best known for the ‘Glass Flowers’ of Harvard but in the nineteenth century they also invented techniques to sculpt anatomically accurate marine invertebrates in glass. In the course of preparing the Congress and a coordinated temporary exhibition, much new information was uncovered about the collections of Blaschka objects in Ireland, including a total of nearly 800 surviving models. The history of the artists shows a clever business model that was designed to tap a niche market in the contemporary fascination with natural history, and improved through the course of several decades with input from clients and their own passion for understanding their biological subjects. From a modern perspective, a single Blaschka glass model of a marine invertebrate can embody biology, the history of science, craftsmanship, glass chemistry, aesthetics and art. This ability to cross interdisciplinary bridges is a singular strength of the Blaschka works, and is evident in the published proceedings of the Congress.
Resumo:
The reduced Whitehead group $\SK$ of a graded division algebra graded by a torsion-free abelian group is studied. It is observed that the computations here are much more straightforward than in the non-graded setting. Bridges to the ungraded case are then established by the following two theorems: It is proved that $\SK$ of a tame valued division algebra over a henselian field coincides with $\SK$ of its associated graded division algebra. Furthermore, it is shown that $\SK$ of a graded division algebra is isomorphic to $\SK$ of its quotient division algebra. The first theorem gives the established formulas for the reduced Whitehead group of certain valued division algebras in a unified manner, whereas the latter theorem covers the stability of reduced Whitehead groups, and also describes $\SK$ for generic abelian crossed products.
Resumo:
This paper details the monitoring and repair of an impact damaged prestressed concrete bridge. The repair was required following an impact from a low-loader carrying an excavator while passing underneath the bridge. The repair was carried out by preloading the bridge in the vicinity of the damage to relieve some prestressing. This preload was removed following the hardening and considerable strength gain of the repair material. The true behaviour of damaged prestressed concrete bridges during repair is difficult to estimate theoretically due to lack of benchmarking and inadequacy of assumed damage models. A network of strain gauges at locations of interest was thus installed during the entire period of repair. Effects of various activities were qualitatively and quantitatively observed. The interaction and rapid, model-free calibration of damaged and undamaged beams, including identification of damaged gauges were also probed. This full scale experiment is expected to be of interest and benefit to the practising engineer and the researcher alike.
Resumo:
This article describes the discovery and development of the first highly selective, small molecule antagonist of the muscarinic acetylcholine receptor subtype I (mAChR1 or M-1). An M-1 functional, cell-based, calcium-mobilization assay identified three distinct chemical series with initial selectivity for M-1 versus M-4. An iterative parallel synthesis approach was employed to optimize all three series in parallel, which led to the development of novel microwave-assisted chemistry and provided important take home lessons for probe development projects. Ultimately, this effort produced VU0255035, a potent (IC50 = 130 nM) and selective (>75-fold vs. M-2-M-5 and >10 mu M vs. a panel of 75 GPCRs, ion channels and transporters) small molecule M-1 antagonist. Further profiling demonstrated that VU0255035 was centrally penetrant (Brain(AUC)/Plasma(AUC) of 0.48) and active in vivo, rendering it acceptable as both an in vitro and in vivo MLSCN/MLPCN probe molecule for studying and dissecting M-1 function.
Resumo:
Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M 1 mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M-1 mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)benzo[c][1,2,5]thiadiazole-4-sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M-1 mAChRs relative to M-2-M-5. Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M-1 mAChRs, a surprising finding given the high level of M-1 mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-D-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilo-carpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M-1 mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.
Resumo:
Inhibitors of Gly transporter type-1 (GlyT1) for the treatment of schizophrenia have been pursued on the basis of the NMDA receptor (R) hypofunction hypothesis, which stems largely from the observation that NMDAR antagonists induce symptoms that more closely mimic those characteristic of schizophrenia than do other classes of psychotic agents. GlyT1 is responsible for uptake of synaptic Gly, an NMDAR co-agonist amino acid, in neuronal populations throughout the forebrain. GlyT1 inhibition thereby potentiates NMDAR activity by increasing synaptic Gly levels. Correspondingly, a large body of data suggests that GlyT1 inhibitors likely confer more comprehensive symptom alleviation than current antipsychotics. To date, a number of small-molecule GlyT1 inhibitors have been reported by the pharmaceutical industry. Developments in the discovery and characterization of GlyT1 inhibitors are discussed in this review.
Resumo:
Punching failure is the common failure mode in concrete bridge deck slabs when these structural components are subjected to local patch loads, such as tyre loads. Past research has shown that reinforced concrete slabs in girder–slab type bridges have a load-carrying capacity far greater than the ultimate static loads predicted by traditional design methods, because of the presence of compressive membrane action. However, due to the instability problems from punching failure, it is difficult to predict ultimate capacities accurately in numerical analyses. In order to overcome the instability problems, this paper establishes an efficient non-linear finite-element analysis using the commercial finite-element package Abaqus. In the non-linear finite-element analysis, stabilisation methods were adopted and failure criteria were established to predict the ultimate punching behaviour of deck slabs in composite steel–concrete bridges. The proposed non-linear finite-element analysis predictions showed a good correlation on punching capacities with experimental tests.