882 resultados para Branch and bound algorithms
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This monograph aims to study the problem of thinning, also known by Image Skeletonization, to explore their applications in areas such as, Biometrics, Medicine, Engineering and Cartography. The algorithms of thinning can be classi ed into two major groups: iterative algorithms and non-iterative algorithms. Iterative are sub-divided into sequential algorithms and parallel algorithms. In order to develop a computer system able to extract the skeleton of an image, were studied, analyzed and implemented di erent algorithms for this problem, precisely those of Stentiford, Zhang Suen, and Holt
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho, propomos um modelo integrado de dimensionamento de lotes e programação da produção monomáquina para uma fábrica de refrigerantes de pequeno porte. As decisões de dimensionamento foram baseadas em um modelo encontrado na literatura e as decisões de sequenciamento foram modeladas utilizando restrições do problema do caixeiro viajante assimétrico. Para a validação do modelo proposto foram feitos testes computacionais com exemplares gerados aleatoriamente, e também exemplares baseados em dados reais obtidos da literatura. Os exemplares foram resolvidos pelo método Branch-and-Cut incluído no pacote computacional CPLEX 10.0. Os resultados mostram que o modelo proposto representa o planejamento da produção em fábricas de bebidas monomáquinas e que, em algumas situações, produz resultados melhores que o modelo da literatura.
Resumo:
This paper describes a new methodology adopted for urban traffic stream optimization. By using Petri net analysis as fitness function of a Genetic Algorithm, an entire urban road network is controlled in real time. With the advent of new technologies that have been published, particularly focusing on communications among vehicles and roads infrastructures, we consider that vehicles can provide their positions and their destinations to a central server so that it is able to calculate the best route for one of them. Our tests concentrate on comparisons between the proposed approach and other algorithms that are currently used for the same purpose, being possible to conclude that our algorithm optimizes traffic in a relevant manner.
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
A power transformer needs continuous monitoring and fast protection as it is a very expensive piece of equipment and an essential element in an electrical power system. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can mislead the conventional protection affecting the power system stability negatively. This study proposes the development of a new algorithm to improve the protection performance by using fuzzy logic, artificial neural networks and genetic algorithms. An electrical power system was modelled using Alternative Transients Program software to obtain the operational conditions and fault situations needed to test the algorithm developed, as well as a commercial differential relay. Results show improved reliability, as well as a fast response of the proposed technique when compared with conventional ones.
Resumo:
Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.
Resumo:
Abstract Background Several mathematical and statistical methods have been proposed in the last few years to analyze microarray data. Most of those methods involve complicated formulas, and software implementations that require advanced computer programming skills. Researchers from other areas may experience difficulties when they attempting to use those methods in their research. Here we present an user-friendly toolbox which allows large-scale gene expression analysis to be carried out by biomedical researchers with limited programming skills. Results Here, we introduce an user-friendly toolbox called GEDI (Gene Expression Data Interpreter), an extensible, open-source, and freely-available tool that we believe will be useful to a wide range of laboratories, and to researchers with no background in Mathematics and Computer Science, allowing them to analyze their own data by applying both classical and advanced approaches developed and recently published by Fujita et al. Conclusion GEDI is an integrated user-friendly viewer that combines the state of the art SVR, DVAR and SVAR algorithms, previously developed by us. It facilitates the application of SVR, DVAR and SVAR, further than the mathematical formulas present in the corresponding publications, and allows one to better understand the results by means of available visualizations. Both running the statistical methods and visualizing the results are carried out within the graphical user interface, rendering these algorithms accessible to the broad community of researchers in Molecular Biology.