976 resultados para Brain imaging
Resumo:
The cholinergic system is thought to play an important role in hippocampal-dependent learning and memory. However, the mechanism of action of the cholinergic system in these actions in not well understood. Here we examined the effect of muscarinic receptor stimulation in hippocampal CA1 pyramidal neurons using whole-cell recordings in acute brain slices coupled with high-speed imaging of intracellular calcium. Activation of muscarinic acetylcholine receptors by synaptic stimulation of cholinergic afferents or application of muscarinic agonist in CA1 pyramidal neurons evoked a focal rise in free calcium in the apical dendrite that propagated as a wave into the soma and invaded the nucleus. The calcium rise to a single action potential was reduced during muscarinic stimulation. Conversely, the calcium rise during trains of action potentials was enhanced during muscarinic stimulation. The enhancement of free intracellular calcium was most pronounced in the soma and nuclear regions. In many cases, the calcium rise was distinguished by a clear inflection in the rising phase of the calcium transient, indicative of a regenerative response. Both calcium waves and the amplification of action potential-induced calcium transients were blocked the emptying of intracellular calcium stores or by antagonism of inositol 1,4,5-trisphosphate receptors with heparin or caffeine. Ryanodine receptors were not essential for the calcium waves or enhancement of calcium responses. Because rises in nuclear calcium are known to initiate the transcription of novel genes, we suggest that these actions of cholinergic stimulation may underlie its effects on learning and memory.
Resumo:
Off-resonance RF pre-saturation was used to obtain contrast in MRI images of polymer gel dosimeters irradiated to doses up to 50 Gy. Two different polymer gel dosimeters composed of 2-hydroxyethyl-acryl ate or methacrylic acid monomers mixed with N, N'-methylene-bisacrylamide (BIS), dispersed in an aqueous gelatin matrix were evaluated. Radiation-induced polymerization of the co-monomers generates a fast-relaxing insoluble polymer. Saturation of the polymer using off-resonance Gaussian RF pulses prior to a spin-echo read-out with a short echo time leads to contrast that is dependent on the absorbed dose. This contrast is attributed to magnetization transfer (MT) between free water and the polymer, and direct saturation of water was found to be negligible under the prevailing experimental conditions. The usefulness of MT imaging was assessed by computing the dose resolution obtained with this technique. We found a low value of dose resolution over a wide range of doses could be obtained with a single experiment. This is an advantage over multiple spin echo (MSE) experiments using a single echo spacing where an optimal dose resolution is achieved over only very limited ranges of doses. The results suggest MT imaging protocols may be developed into a useful tool for polymer gel dosimetry.
Resumo:
Real-time Taqman(TM) RT-PCR was used to make quantitative comparisons of the levels of PrRP mRNA expression in micropunch brain samples from rats at different stages of the oestrous cycle and in lactation. The nucleus of the solitary tract and ventrolateral reticular nuclei of the medulla oblongata contained significantly (P < 0.05) greater levels of PrRP mRNA than any hypothalamic region. Within the hypothalamus, the highest level of PrRP expression was localised to the dorsomedial aspect of the ventromedial hypothalamus. All other hypothalamic regions exhibited significantly (P < 0.05) lower levels of expression, including the rostral and caudal dorsomedial hypothalamus. Very low levels of PrRP expression were observed in the arcuate nucleus, paraventricular nucleus, medial preoptic nucleus and ventrolateral aspect of the ventromedial hypothalamus. No significant changes in PrRP expression were noted in any sampled region between proestrus, oestrus or dioestrus. Similarly, PrRP expression in hypothalamic regions did not differ between lactating and non-lactating (dioestrous) animals. During validation of RT-PCR techniques we cloned and sequenced a novel splice variant of PrRP from the hypothalamus. This variant arises from alternative splicing of the donor site within exon 2, resulting in an insert of 64 base pairs and shift in the-codon:reading frame with the introduction of an early stop codon. In the hypothalamus and brainstem, mRNA expression of the variant was restricted to regions that expressed PrRP. These results suggest that PrRP expression in the hypothalamus may be more Widespread than previously reported. However, the relatively low level of PrRP in the hypothalamus and the lack of significant changes in expression during the oestrous cycle and lactation provides further evidence that PrRP is unlikely to be involved in the regulation of prolactin, secretion. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We are interested in determining whether low maternal vitamin D-3 affects brain development in utero. Whilst the vitamin D receptor (VDR) has been identified in embryonic rat brains, the timing and magnitude of its expression across the brain remains unclear. In this study we have quantitated VDR expression during development as well correlated the timing of its appearance with two vital developmental events, apoptosis and mitosis. Brains from embryonic rats (embryonic days 15-23) were examined. We show that the well-described increase in apoptotic cells and decrease in mitotic cells during development correlates with the appearance of the VDR in brain tissue. Given that vitamin D-3 regulates mitosis and apoptosis in non-neuronal tissue we speculate that the timing of VDR expression in embryonic brain may directly or indirectly mediate features of neuronal apoptosis and mitosis.
Resumo:
Activity within motor areas of the cortex begins to increase 1 to 2 s prior to voluntary self-initiated movement (termed the Bereitschaftspotential or readiness potential). There has been much speculation and debate over the precise source of this early premovement activity as it is important for understanding the roles of higher order motor areas in the preparation and readiness for voluntary movement. In this study, we use high-field (3-T) event-related fMRI with high temporal sampling (partial brain volumes every 250 ms) to specifically examine hemodynamic response time courses during the preparation, readiness, and execution of purely self-initiated voluntary movement. Five right-handed healthy volunteers performed a rapid sequential finger-to-thumb movement performed at self-determined times (12-15 trials). Functional images for each trial were temporally aligned and the averaged time series for each subject was iteratively correlated with a canonical hemodynamic response function progressively shifted in time. This analysis method identified areas of activation without constraining hemodynamic response timing. All subjects showed activation within frontal mesial areas, including supplementary motor area (SMA) and cingulate motor areas, as well as activation in left primary sensorimotor areas. The time courses of hemodynamic responses showed a great deal of variability in shape and timing between subjects; however, four subjects clearly showed earlier relative hemodynamic responses within SMA/cingulate motor areas compared with left primary motor areas. These results provide further evidence that the SMA and cingulate motor areas are major contributors to early stage premovement activity and play an important role in the preparation and readiness for voluntary movement. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Direct and simultaneous observation of root growth and plant water uptake is difficult because soils are opaque. X-ray imaging techniques such as projection radiography or Computer Tomography (CT) offer a partial alternative to such limitations. Nevertheless, there is a trade-off between resolution, large field-of-view and 3-dimensionality: With the current state of the technology, it is possible to have any two. In this study, we used X-ray transmission through thin-slab systems to monitor transient saturation fields that develop around roots as plants grow. Although restricted to 2-dimensions, this approach offers a large field-of-view together with high spatial and dynamic resolutions. To illustrate the potential of this technology, we grew peas in 1 cm thick containers filled with soil and imaged them at regular intervals. The dynamics of both the root growth and the water content field that developed around the roots could be conveniently monitored. Compared to other techniques such as X-ray CT, our system is relatively inexpensive and easy to implement. It can potentially be applied to study many agronomic problems, such as issues related to the impact of soil constraints (physical, chemical or biological) on root development.
Resumo:
Cytosolic sulfotransferases are believed to play a role in the neuromodulation of certain neurotransmitters and drugs. To date, four cytosolic sulfotransferases have been shown to be expressed in human brain. Recently, a novel human brain sulfotransferase has been identified and characterized, although its role and localization in the brain are unknown. Here we present the first immunohistochemical (IHC) localization of SULT4A1 in human brain using an affinity-purified polyclonal antibody raised against recombinant human SULT4A1. These results are supported and supplemented by the IHC localization of SULT4A1 in rat brain. In both human and rat brains, strong reactivity was found in several brain regions, including cerebral cortex, cerebellum, pituitary, and brainstem. Specific signal was entirely absent on sections for which preimmune serum from the corresponding animal, processed in the same way as the postimmune serum, was used in the primary screen. The findings from this study may assist in determining the physiological role of this SULT isoform.
Resumo:
Functional magnetic resonance imaging (FMRI) analysis methods can be quite generally divided into hypothesis-driven and data-driven approaches. The former are utilised in the majority of FMRI studies, where a specific haemodynamic response is modelled utilising knowledge of event timing during the scan, and is tested against the data using a t test or a correlation analysis. These approaches often lack the flexibility to account for variability in haemodynamic response across subjects and brain regions which is of specific interest in high-temporal resolution event-related studies. Current data-driven approaches attempt to identify components of interest in the data, but currently do not utilise any physiological information for the discrimination of these components. Here we present a hypothesis-driven approach that is an extension of Friman's maximum correlation modelling method (Neurolmage 16, 454-464, 2002) specifically focused on discriminating the temporal characteristics of event-related haemodynamic activity. Test analyses, on both simulated and real event-related FMRI data, will be presented.
Resumo:
Thirst was induced by rapid i.v. infusion of hypertonic saline (0.51 M at 13.4 ml/min). Ten humans were neuroimaged by positron-emission tomography (PET) and four by functional MRI (fMRI). PET images were made 25 min after beginning infusion, when the sensation of thirst began to enter the stream of consciousness. The fMRI images were made when the maximum rate of increase of thirst occurred. The PET results showed regional cerebral blood flow changes similar to those delineated when thirst was maximal. These loci involved the phylogenetically ancient areas of the brain. fMRI showed activation in the anterior wall of the third ventricle, an area that is key in the genesis of thirst but is not an area revealed by PET imaging. Thus, this region plays as major a role in thirst for humans as for animals. Strong activations in the brain with fMRI included the anterior cingulate, parahippocampal gyrus, inferior and middle frontal gyri, insula, and cerebellum. When the subjects drank water to satiation, thirst declined immediately to baseline. A precipitate decline in intensity of activation signal occurred in the anterior cingulate area (Brodmann area 32) putatively related to consciousness of thirst. The intensity of activation in the anterior wall of the third ventricle was essentially unchanged, which is consistent with the fact that a significant time (15-20 min) would be needed before plasma Na concentration changed as a result of water absorption from the gut.