882 resultados para Brain Injury
Resumo:
Environmental Burkholderia pseudomallei isolated from sandy soil at Castle Hill, Townsville, in the dry tropic region of Queensland, Australia, was inoculated into sterile-soil laboratory microcosms subjected to variable soil moisture. Survival and sublethal injury of the B. pseudomallei strain were monitored by recovery using culture-based methods. Soil extraction buffer yielded higher recoveries as an extraction agent than sterile distilled water. B. pseudomallei was not recoverable when inoculated into desiccated soil but remained recoverable from moist soil subjected to 91 days desiccation and showed a growth response to increased soil moisture over at least 113 days. Results indicate that endemic dry tropic soil may act as a reservoir during the dry season, with an increase in cell number and potential for mobilization from soil into water in the wet season.
Resumo:
This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.
Resumo:
Background Efficient effective child product safety (PS) responses require data on hazards, injury severity and injury probability. PS responses in Australia largely rely on reports from manufacturers/retailers, other jurisdictions/regulators, or consumers. The extent to which reactive responses reflect actual child injury priorities is unknown. Aims/Objectives/Purpose This research compared PS issues for children identified using data compiled from PS regulatory data and data compiled from health data sources in Queensland, Australia. Methods PS regulatory documents describing issues affecting children in Queensland in 2008–2009 were compiled and analysed to identify frequent products and hazards. Three health data sources (ED, injury surveillance and hospital data) were analysed to identify frequent products and hazards. Results/Outcomes Projectile toys/squeeze toys were the priority products for PS regulators with these toys having the potential to release small parts presenting choking hazards. However, across all health datasets, falls were the most common mechanism of injury, and several of the products identified were not subject to a PS system response. While some incidents may not require a response, a manual review of injury description text identified child poisonings and burns as common mechanisms of injuries in the health data where there was substantial documentation of product-involvement, yet only 10% of PS system responses focused on these two mechanisms combined. Significance/contribution to the field Regulatory data focused on products that fail compliance checks with ‘potential’ to cause harm, and health data identified actual harm, resulting in different prioritisation of products/mechanisms. Work is needed to better integrate health data into PS responses in Australia.
A new model to study healing of a complex femur fracture with concurrent soft tissue injury in sheep
Resumo:
High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed increasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.
Resumo:
The general aim of this book is to provide a comprehensive summary of the characteristics of exercise-induced muscle damage and the mechanisms of tissue inflammation. The authors present a large amount of our own original data and have summarised the research of others.
Resumo:
Adolescent injury remains a significant public health concern and is often the result of at-risk transport related behaviours. When a person is injured actions taken by bystanders are of crucial importance and timely first aid appears to reduce the severity of some injuries (Hussain & Redmond, 1994). Accordingly, researchers have suggested that first aid training should be more widely available as a potential strategy to reduce injury (Lynch et al., 2006). Further research has identified schools as an ideal setting for learning first aid skills as a means of injury prevention (Maitra, 1997). The current research examines the implications of school based first aid training for young adolescents on injury prevention, particularly relating to transport injuries. First aid training was integrated with peer protection and school connectedness within the Skills for Preventing Injury in Youth (SPIY) program (Buckley & Sheehan, 2009) and evaluated to determine if there was a reduction in the likelihood of transport related injuries at six months post-intervention. In Queensland, Australia, 35 high schools were recruited and randomly assigned to intervention and control conditions in early April 2012. A total of 2,000 Year nine students (mean age 13.5 years, 39% male) completed surveys six months post-intervention in November 2012. Analyses will compare the intervention students with control group students who self-reported i) first aid training with a teacher, professional or other adult and ii) no first aid in the preceding six months. Using the Extended Adolescent Injury Checklist (E-AIC) (Chapman, Buckley & Sheehan, 2011) the transport related injury experiences included being injured while “riding as a passenger in a car”, “driving a car off road” and “riding a bicycle”. It is expected that students taught first aid within SPIY will report significantly fewer transport related injuries in the previous three months, compared to the control groups described above. Analyses will be conducted separately for sex and socio-economic class of schools. Findings from this study will provide insight into the value of first aid in adolescent injury prevention and provide evidence as to whether teaching first aid skills within a school based health education curriculum has traffic safety implications.
Resumo:
The role of inflammatory response after spinal cord injury remains unclear. This thesis was a step forward in studying how promoting the inflammation, by delivery pro-inflammatory growth factors, affects the outcomes of spinal cord injury. A significant functional improvement was observed after treatment and these results suggest an interesting avenue for future clinical treatments and may provide a platform to improve the efficacy of other treatments.
Resumo:
STUDY DESIGN: Reliability and case-control injury study. OBJECTIVES: 1) To determine if a novel device, designed to measure eccentric knee flexors strength via the Nordic hamstring exercise (NHE), displays acceptable test-retest reliability; 2) to determine normative values for eccentric knee flexors strength derived from the device in individuals without a history of hamstring strain injury (HSI) and; 3) to determine if the device could detect weakness in elite athletes with a previous history of unilateral HSI. BACKGROUND: HSIs and reinjuries are the most common cause of lost playing time in a number of sports. Eccentric knee flexors weakness is a major modifiable risk factor for future HSIs, however there is a lack of easily accessible equipment to assess this strength quality. METHODS: Thirty recreationally active males without a history of HSI completed NHEs on the device on 2 separate occasions. Intraclass correlation coefficients (ICCs), typical error (TE), typical error as a co-efficient of variation (%TE), and minimum detectable change at a 95% confidence interval (MDC95) were calculated. Normative strength data were determined using the most reliable measurement. An additional 20 elite athletes with a unilateral history of HSI within the previous 12 months performed NHEs on the device to determine if residual eccentric muscle weakness existed in the previously injured limb. RESULTS: The device displayed high to moderate reliability (ICC = 0.83 to 0.90; TE = 21.7 N to 27.5 N; %TE = 5.8 to 8.5; MDC95 = 76.2 to 60.1 N). Mean±SD normative eccentric flexors strength, based on the uninjured group, was 344.7 ± 61.1 N for the left and 361.2 ± 65.1 N for the right side. The previously injured limbs were 15% weaker than the contralateral uninjured limbs (mean difference = 50.3 N; 95% CI = 25.7 to 74.9N; P < .01), 15% weaker than the normative left limb data (mean difference = 50.0 N; 95% CI = 1.4 to 98.5 N; P = .04) and 18% weaker than the normative right limb data (mean difference = 66.5 N; 95% CI = 18.0 to 115.1 N; P < .01). CONCLUSIONS: The experimental device offers a reliable method to determine eccentric knee flexors strength and strength asymmetry and revealed residual weakness in previously injured elite athletes.
Resumo:
This study is the first to employ an epidemiological framework to evaluate the ‘fit-for-purpose’ of ICD-10-AM external cause of injury codes, ambulance and hospital clinical documentation for injury surveillance. Importantly, this thesis develops an evidence-based platform to guide future improvements in routine data collections used to inform the design of effective injury prevention strategies. Quantification of the impact of ambulance clinical records on the overall information quality of Queensland hospital morbidity data collections for injury causal information is a unique and notable contribution of this study.
Resumo:
Poor health and injury represent major obstacles to the future economic security of Australia. The national economic cost of work-related injury is estimated at $57.5 billion p/a. Since exposure to high physical demands is a major risk factor for musculoskeletal injury, monitoring and managing such physical activity levels in workers is a potentially important injury prevention strategy. Current injury monitoring practices are inadequate for the provision of clinically valuable information about the tissue specific responses to physical exertion. Injury of various soft tissue structures can manifest over time through accumulation of micro-trauma. Such micro-trauma has a propensity to increase the risk of acute injuries to soft-tissue structures such as muscle or tendon. As such, the capacity to monitor biomarkers that result from the disruption of these tissues offers a means of assisting the pre-emptive management of subclinical injury prior to acute failure or for evaluation of recovery processes. Here we have adopted an in-vivo exercise induced muscle damage model allowing the application of laboratory controlled conditions to assist in uncovering biochemical indicators associated with soft-tissue trauma and recovery. Importantly, urine was utilised as the diagnostic medium since it is non-invasive to collect, more acceptable to workers and less costly to employers. Moreover, it is our hypothesis that exercise induced tissue degradation products enter the circulation and are subsequently filtered by the kidney and pass through to the urine. To test this hypothesis a range of metabolomic and proteomic discovery-phase techniques were used, along with targeted approaches. Several small molecules relating to tissue damage were identified along with a series of skeletal muscle-specific protein fragments resulting from exercise induced soft-tissue damage. Each of the potential biomolecular markers appeared to be temporally present within urine. Moreover, the regulation of abundance seemed to be associated with functional recovery following the injury. This discovery may have important clinical applications for monitoring of a variety of inflammatory myopathies as well as novel applications in monitoring of the musculoskeletal health status of workers, professional athletes and/or military personnel to reduce the onset of potentially debilitating musculoskeletal injuries within these professions.
Resumo:
Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS with both genetic and environmental contributing factors. Clinical symptoms are broadly characterized by initial onset, and progressive debilitating neurological impairment. In this study, RNA from MS chronic active and MS acute lesions was extracted, and compared with patient matched normal white matter by fluorescent cDNA microarray hybridization analysis. This resulted in the identification of 139 genes that were differentially regulated in MS plaque tissue compared to normal tissue. Of these, 69 genes showed a common pattern of expression in the chronic active and acute plaque tissues investigated (Pvalue<0.0001, ρ=0.73, by Spearman's ρ analysis); while 70 transcripts were uniquely differentially expressed (≥1.5-fold) in either acute or chronic active tissues. These results included known markers of MS such as the myelin basic protein (MBP) and glutathione S-transferase (GST) M1, nerve growth factors, such as nerve injury-induced protein 1 (NINJ1), X-ray and excision DNA repair factors (XRCC9 and ERCC5) and X-linked genes such as the ribosomal protein, RPS4X. Primers were then designed for seven array-selected genes, including transferrin (TF), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), GSTP1, crystallin, alpha-B (CRYAB), phosphomannomutase 1 (PMM1) and tubulin β-5 (TBB5), and real time quantitative (Q)-PCR analysis was performed. The results of comparative Q-PCR analysis correlated significantly with those obtained by array analysis (r=0.75, Pvalue<0.01, by Pearson's bivariate correlation). Both chronic active and acute plaques shared the majority of factors identified suggesting that quantitative, rather than gross qualitative differences in gene expression pattern may define the progression from acute to chronic active plaques in MS.
Resumo:
Background There is considerable and ongoing debate about the role and effectiveness of school-based injury prevention programs in reducing students’ later involvement in alcohol associated transport injuries. Most relevant literature is concerned with pre-driving and licensing programs for middle age range adolescents (15-17 years). This research team is concerned with prevention at an earlier stage by targeting interventions to young adolescents (13-14 years). There is strong evidence that young adolescents who engage in unsafe and illegal alcohol associated transport risks are significantly likely to incur serious related injuries in longitudinal follow up. For example, a state-wide representative sample of male adolescents (mean age 14.5 years) who reported being passengers of drink drivers were significantly more likely to have incurred a hospitalised injury related to traffic events at a 20 year follow up. Aim This paper reports on first aid training integrated with peer protection and school connectedness within the Skills for Preventing Injury in Youth (SPIY) program. A component of the intervention is concerned with providing strategies to reduce the likelihood of being a passenger of a drink driver and effectiveness is followed up at six months post-intervention. Method In early 2012 the study was undertaken in 35 high schools throughout Queensland that were randomly assigned to intervention and control conditions. A total of 2,521 Year 9 students (mean age 13.5years, 43% male) completed surveys prior to the intervention. Results Of these students 316 (13.7%) reported having ridden in a car with someone who has been drinking. This is a traffic safety behaviour that is particularly relevant to a peer protection intervention and the findings of the six month follow up will be reported. Discussion and conclusions This research will provide evidence as to whether this approach to the introduction of first aid skills within a school-based health education curriculum has traffic safety implications.
Resumo:
High-risk adolescents are most vulnerable to the negative outcomes of risk taking behaviour, such as injury. It has been theorised by Jessor (1987) that adolescent risk behaviours (e.g. violence, alcohol use) can be predicted by assessing the risk factors (e.g. peer models for violence) and protective factors (e.g. school connectedness) in a young person’s life. The aim of this research is to examine the influence of risk factors and protective factors on the proneness of high-risk adolescents to engage in risky behaviour. 2,521 Grade 9 students (13-14 years of age) from 35 schools in Queensland, Australia participated in this study. The findings examine the influence of risk factors and protective factors on self-reported risky behaviour and injury experiences for adolescents who have been categorized as high-risk. Thereby, providing insight that may be used to target preventive interventions aimed at high-risk adolescents.