873 resultados para Box Butte Experiment farm
Resumo:
The Bollène-2002 Experiment was aimed at developing the use of a radar volume-scanning strategy for conducting radar rainfall estimations in the mountainous regions of France. A developmental radar processing system, called Traitements Régionalisés et Adaptatifs de Données Radar pour l’Hydrologie (Regionalized and Adaptive Radar Data Processing for Hydrological Applications), has been built and several algorithms were specifically produced as part of this project. These algorithms include 1) a clutter identification technique based on the pulse-to-pulse variability of reflectivity Z for noncoherent radar, 2) a coupled procedure for determining a rain partition between convective and widespread rainfall R and the associated normalized vertical profiles of reflectivity, and 3) a method for calculating reflectivity at ground level from reflectivities measured aloft. Several radar processing strategies, including nonadaptive, time-adaptive, and space–time-adaptive variants, have been implemented to assess the performance of these new algorithms. Reference rainfall data were derived from a careful analysis of rain gauge datasets furnished by the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. The assessment criteria for five intense and long-lasting Mediterranean rain events have proven that good quantitative precipitation estimates can be obtained from radar data alone within 100-km range by using well-sited, well-maintained radar systems and sophisticated, physically based data-processing systems. The basic requirements entail performing accurate electronic calibration and stability verification, determining the radar detection domain, achieving efficient clutter elimination, and capturing the vertical structure(s) of reflectivity for the target event. Radar performance was shown to depend on type of rainfall, with better results obtained with deep convective rain systems (Nash coefficients of roughly 0.90 for point radar–rain gauge comparisons at the event time step), as opposed to shallow convective and frontal rain systems (Nash coefficients in the 0.6–0.8 range). In comparison with time-adaptive strategies, the space–time-adaptive strategy yields a very significant reduction in the radar–rain gauge bias while the level of scatter remains basically unchanged. Because the Z–R relationships have not been optimized in this study, results are attributed to an improved processing of spatial variations in the vertical profile of reflectivity. The two main recommendations for future work consist of adapting the rain separation method for radar network operations and documenting Z–R relationships conditional on rainfall type.
Resumo:
OBJECTIVES: In 2009, CTX-M Enterobacteriaceae and Salmonella isolates were recovered from a UK pig farm, prompting studies into the dissemination of the resistance and to establish any relationships between the isolates. METHODS: PFGE was used to elucidate clonal relationships between isolates whilst plasmid profiling, restriction analysis, sequencing and PCR were used to characterize the CTX-M-harbouring plasmids. RESULTS: Escherichia coli, Klebsiella pneumoniae and Salmonella 4,5,12:i:- and Bovismorbificans resistant to cefotaxime (n = 65) were recovered and 63 were shown by PCR to harbour a group 1 CTX-M gene. The harbouring hosts were diverse, but the group 1 CTX-M plasmids were common. Three sequenced CTX-M plasmids from E. coli, K. pneumoniae and Salmonella enterica serotype 4,5,12:i:- were identical except for seven mutations and highly similar to IncI1 plasmid ColIb-P9. Two antimicrobial resistance regions were identified: one inserted upstream of yacABC harbouring ISCR2 transposases, sul2 and floR; and the other inserted within shfB of the pilV shufflon harbouring the ISEcp1 transposase followed by blaCTX-M-1. CONCLUSIONS: These data suggest that an ST108 IncI1 plasmid encoding a blaCTX-M-1 gene had disseminated across multiple genera on this farm, an example of horizontal gene transfer of the blaCTX-M-1 gene.
Resumo:
The MATLAB model is contained within the compressed folders (versions are available as .zip and .tgz). This model uses MERRA reanalysis data (>34 years available) to estimate the hourly aggregated wind power generation for a predefined (fixed) distribution of wind farms. A ready made example is included for the wind farm distribution of Great Britain, April 2014 ("CF.dat"). This consists of an hourly time series of GB-total capacity factor spanning the period 1980-2013 inclusive. Given the global nature of reanalysis data, the model can be applied to any specified distribution of wind farms in any region of the world. Users are, however, strongly advised to bear in mind the limitations of reanalysis data when using this model/data. This is discussed in our paper: Cannon, Brayshaw, Methven, Coker, Lenaghan. "Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in Great Britain". Submitted to Renewable Energy in March, 2014. Additional information about the model is contained in the model code itself, in the accompanying ReadMe file, and on our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/
Resumo:
Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.
Resumo:
Although no GM crops currently are licensed for commercial production in the UK, as opposition to GM crops by consumers softens, this could change quickly. Although past studies have examined attitudes of UK farmers toward GM technologies in general, there has been little work on the impact of possible coexistence measures on their attitudes toward GM crop production. This could be because the UK Government has not engaged in any public dialogue on the coexistence measures that might be applied on farms. Based on a farm survey, this article examines farmers’ attitudes toward GM technologies and planting intentions for three crops (maize, oilseed rape, and sugar beet) based on a GM availability scenario. The article then nuances this analysis with a review of farmer perceptions of the level of constraint associated with a suite of notional farm-level coexistence measures and issues, based on current European Commission guidelines and practice in other EU Member States.
Resumo:
In this study we examine the performance of 31 global model radiative transfer schemes in cloud-free conditions with prescribed gaseous absorbers and no aerosols (Rayleigh atmosphere), with prescribed scattering-only aerosols, and with more absorbing aerosols. Results are compared to benchmark results from high-resolution, multi-angular line-by-line radiation models. For purely scattering aerosols, model bias relative to the line-by-line models in the top-of-the atmosphere aerosol radiative forcing ranges from roughly −10 to 20%, with over- and underestimates of radiative cooling at lower and higher solar zenith angle, respectively. Inter-model diversity (relative standard deviation) increases from ~10 to 15% as solar zenith angle decreases. Inter-model diversity in atmospheric and surface forcing decreases with increased aerosol absorption, indicating that the treatment of multiple-scattering is more variable than aerosol absorption in the models considered. Aerosol radiative forcing results from multi-stream models are generally in better agreement with the line-by-line results than the simpler two-stream schemes. Considering radiative fluxes, model performance is generally the same or slightly better than results from previous radiation scheme intercomparisons. However, the inter-model diversity in aerosol radiative forcing remains large, primarily as a result of the treatment of multiple-scattering. Results indicate that global models that estimate aerosol radiative forcing with two-stream radiation schemes may be subject to persistent biases introduced by these schemes, particularly for regional aerosol forcing.
Resumo:
Purpose – Investors are now able to analyse more noise-free news to inform their trading decisions than ever before. Their expectation that more information means better performance is not supported by previous psychological experiments which argue that too much information actually impairs performance. The purpose of this paper is to examine whether the degree of information explicitness improves stock market performance. Design/methodology/approach – An experiment is conducted in a computer laboratory to examine a trading simulation manipulated from a real market-shock. Participants’ performance efficiency and effectiveness are measured separately. Findings – The results indicate that the explicitness of information neither improves nor impairs participants’ performance effectiveness from the perspectives of returns, share and cash positions, and trading volumes. However, participants’ performance efficiency is significantly affected by information explicitness. Originality/value – The novel approach and findings of this research add to the knowledge of the impact of information explicitness on the quality of decision making in a financial market environment.
Resumo:
The REgents PARk and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160–190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types.
Resumo:
Data collected by ground magnetometers and high latitude radars during a small isolated substorm are discussed in terms of the global changes in convection during the substorm. This substorm was observed during the international GISMOS (Global Ionospheric Simultaneous Measurements of Substorms) Experiment of 1 – 5 June 1987 and the array of observations discussed here span the night sector from approximately dusk to dawn. The substorm, observed by the Sondrestrom radar and auroral and midlatitude magnetometers is associated with a polar cap contraction observed near dusk by the EISCAT radar.
Resumo:
We present a first overview of flows in the high latitude ionosphere observed at 15 s resolution using the U.K.-Polar EISCAT experiment. Data are described from experiments conducted on two days, 27 October 1984 and 29 August 1985, which together span the local times between about 0200 and 2130MLT and cover five different regions of ionospheric flow. With increasing local time, these are: the dawn auroral zone flow cell, the dayside region of low background flows equatorward of the flow cells, the dusk auroral zone flow cell, the boundary region between the dusk auroral zone and the polar cap, and the evening polar cap. Flows in both the equatorward and poleward portions of the auroral zone cells appear to be relatively smooth, while in the central region of high speed flow considerable variations are generally present. These have the form of irregular fluctuations on a wide range of time scales in the early morning dawn cell, and impulsive wave-like variations with periods of a few minutes in the afternoon dusk cell. In the dayside region between the flow cells, the ionosphere is often essentially stagnant for long intervals, but low amplitude ULF waves with a period of about 5 min can also occur and persist for many cycles. These conditions are punctuated at one to two hour intervals by sudden ‘flow burst’ events with impulsively generated damped wave trains. Initial burst flows are generally directed poleward and can peak at line-of-sight speeds in excess of 1 km s^{−1} after perhaps 45 s. Flows in the polar cap are reasonably smooth on time scales of a few minutes and show no evidence for the presence of ULF waves. Under most, but not all, of the above conditions, the beam-swinging algorithm used to determine background vector flows should produce meaningful results. Comparison of these flow data with simultaneous plasma and magnetic field measurements in the solar wind, made by the AMPTE IRM and UKS spacecraft, emphasizes the strong control exerted on high latitude flows by the north-south component of the IMF.
Resumo:
Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.
Resumo:
Fossil fuel combustion and deforestation have resulted in a rapid increase in atmospheric [CO2] since the 1950’s, and it will reach about 550 μmol mol−1 in 2050. Field experiments were conducted at the Free-air CO2 Enrichment facility in Beijing, China. Winter wheat was grown to maturity under elevated [CO2] (550 ± 17 μmol mol−1) and ambient [CO2] (415 ± 16 μmol mol−1), with high nitrogen (N) supply (HN, 170 kg N ha−1) and low nitrogen supply (LN, 100 kg N ha−1) for three growing seasons from 2007 to 2010. Elevated [CO2] increased wheat grain yield by 11.4% across the three years. [CO2]-induced yield enhancements were 10.8% and 11.9% under low N and high N supply, respectively. Nitrogen accumulation under elevated [CO2] was increased by 12.9% and 9.2% at the half-way anthesis and ripening stage across three years, respectively. Winter wheat had higher nitrogen demand under elevated [CO2] than ambient [CO2], and grain yield had a stronger correlation with plant N uptake after anthesis than before anthesis at high [CO2]. Our results suggest that regulating on the N application rate and time, is likely important for sustainable grain production under future CO2 climate.
Resumo:
In the present study, to shed light on a role of positional error correction mechanism and prediction mechanism in the proactive control discovered earlier, we carried out a visual tracking experiment, in which the region where target was shown, was regulated in a circular orbit. Main results found in this research were following. Recognition of a time step, obtained from the environmental stimuli, is required for the predictive function. The period of the rhythm in the brain obtained from environmental stimuli is shortened about 10%, when the visual information is cut-off. The shortening of the period of the rhythm in the brain accelerates the motion as soon as the visual information is cut-off, and lets the hand motion precedes the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand precedes in average the target when the predictive mechanism dominates the error-corrective mechanism.