893 resultados para Boron Solubility


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfur dioxide in aqueous solutions at low pH levels exists both in molecular SO2(aq) and in hydrolyzed ionic form HSO3-. Experiments indicate that only HSO3- is the reacting species in the oxidation catalyzed by activated carbon, while SO2(aq) deactivates by competing with HSO3 for the active sites of the catalyst particles. A mechanism is proposed and a rate model is developed that also accounts for the effect of sulfuric acid (product of the oxidation) on the solubility of sulfur dioxide. It predicts first order in HSO3-, half order in dissolved oxygen, and a linear deactivation effect of SO2(aq), which are confirmed by experimental data. The deactivation reaches a constant level corresponding to saturation of the active sites by SO2(aq). Activation energy for the oxidation is 93.55 kJ mol(-1) and for deactivation is 21.4 kJ mol(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gibbs free energies of formation of strontium and barium zirconates have been determined in the temperature range 960 to 1210 K using electrochemical cells incorporating the respective alkaline-earth fluoride single crystals as solid electrolytes. Pure strontium and barium monoxides were used in the reference electrodes. During measurements on barium zirconate, the oxygen partial pressure in the gas phase over the electrodes was maintained at a low value of 18.7 Pa to minimize the solubility of barium peroxide in the monoxide phase. Strontium zirconate was found to undergo a phase transition from orthorhombic perovskite to) with space group Cmcm; D-2h(17) to tetragonal perovskite (t) having the space group 14/mcm; D-4h(18) at 1123 (+/- 10) K. Barium zirconate does not appear to undergo a phase transition in the temperature range of measurement. It has the cubic perovskite (c) structure. The standard free energies of formation of the zirconates from their component binary oxides AO (A = Sr, Ba) with rock salt (rs) and ZrO2 with monoclinic (m) structures can be expressed by the following relations:SrO (rs) + ZrO2 (m) --> SrZrO3 (o) Delta G degrees = -74,880 - 14.2T (+/-200) J mol(-1) SrO (rs) + ZrO2 (m) --> SrZrO3 (t) Delta G degrees = -73,645 - 15.3T (+/-200) J mol(-1) BaO (rs) + ZrO2 (m) --> BaZrO4 (c) Delta G degrees = -127,760 - 1.79T (+/-250) J mol(-1) The results of this study are in reasonable agreement with calorimetric measurements reported in the literature. Systematic trends in the stability of alkaline-earth zirconates having the stoichiometry AZrO(3) are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An account is given of the research that has been carried out on mechanical alloying/milling (MA/MM) during the past 25 years. Mechanical alloying, a high energy ball milling process, has established itself as a viable solid state processing route for the synthesis of a variety of equilibrium and non-equilibrium phases and phase mixtures. The process was initially invented for the production of oxide dispersion strengthened (ODS) Ni-base superalloys and later extended to other ODS alloys. The success of MA in producing ODS alloys with better high temperature capabilities in comparison with other processing routes is highlighted. Mechanical alloying has also been successfully used for extending terminal solid solubilities in many commercially important metallic systems. Many high melting intermetallics that are difficult to prepare by conventional processing techniques could be easily synthesised with homogeneous structure and composition by MA. It has also, over the years, proved itself to be superior to rapid solidification processing as a non-equilibrium processing tool. The considerable literature on the synthesis of amorphous, quasicrystalline, and nanocrystalline materials by MA is critically reviewed. The possibility of achieving solid solubility in liquid immiscible systems has made MA a unique process. Reactive milling has opened new avenues for the solid state metallothermic reduction and for the synthesis of nanocrystalline intermetallics and intermetallic matrix composites. Despite numerous efforts, understanding of the process of MA, being far from equilibrium, is far from complete, leaving large scope for further research in this exciting field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aqueous phase oxidation of sulphur dioxide at low concentrations catalysed by a PVP-Cu complex in the solid phase and dissolved Cu(II) in the liquid phase is studied in a rotating catalyst basket reactor (RCBR). The equilibrium adsorption of Cu(II) and S(VI) on PVP particles is found to be of the Langmuir-type. The diffusional effects of S(IV) species in PVP-Cu resin are found to be insignificant whereas that of product S(VI) are found to be significant. The intraparticle diffusivity of S(VI) is obtained from independent tracer experiments. In the oxidation reaction HSO3- is the reactive species. Both the S(IV) species in the solution, namely SO2(aq) and HSO3- get adsorbed onto the active PVP-Cu sites of the catalyst, but only HSO3- undergoes oxidation. A kinetic mechanism is proposed based on this feature which shows that SO2(aq) has a deactivating effect on the catalyst. A rate model is developed for the three-phase reaction system incorporating these factors along with the effect of concentration of H2SO4 on the solubility of SO2 in the dilute aqueous solutions of Cu(II). Transient oxidation experiments are conducted at different conditions of concentration of SO2 and O-2 in the gas phase and catalyst concentration, and the rate parameters are estimated from the data. The observed and calculated profiles are in very good agreement. This confirms the deactivating effect of nonreactive SO2(aq) on the heterogeneous catalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Details of the first total syntheses of the sesquiterpenes myltayl-8(12)-ene and 6-epijunicedran-8-ol are described. The aldehyde 13, obtained by Claisen rearrangement of cyclogeraniol, was transformed into the dienones 12 and 18. Boron trifluoride-diethyl ether mediated cyclization and rearrangement transformed the dienones 12 and 18 into the tricyclic ketones 16 and 17, efficiently creating three and four contiguous quaternary carbon atoms, respectively. Wittig methylenation of 16 furnished (+/-)-myltayl-8(12)-ene (11), whereas reduction of the ketone 17 furnished (+/-)-6-epijunicedranol (23).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of the diazo diones 11a-d with boron trifluoride diethyl etherate furnished the bicyclo[4.2.1]nonane-2,g-diones 15a-d in a highly regioselective manner. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal and spectroscopic investigations have been carried out on a number of glasses with a wide range of compositions in the pseudoternary glass system, Li2SO4-Li2O-B2O3, to understand the role of sulfate ions in modifying the borate glass structure. Both nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic results indicate that four-coordinate boron atoms are retained in the glass structure to a greater extent in sulfate-containing glasses than in pure lithium borate glasses. There seems to be some evidence for the existence of sulfoborate-type units in Raman spectra in the region of 800-960 cm(-1). These conclusions are supported by the observed behavior of glass transition temperatures and molar volumes. The possibility of formation of sulfoborate-type units is discussed from bonding and thermodynamic points of view.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aqueous solutions of acetates and nitrates of zinc and cobalt have been spray decomposed to study the production of extended solid solutions in the ZnO-CoO system. Examination of the products of a variety of synthesis conditions indicates that up to 70% CoO may be retained in the solid solution in the wurzite phase, even though a comparison of the equilibrium solubility in the phase diagram might be expected to favor the formation of a rock-salt-based solid solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel zincoborate, Zn(H2O)B2O4.xH(2)O (xapproximate to0.12), I, with open architecture has been synthesized hydrothermally. The 3-dimensional structure is built up of Zn6B12O24 clusters formed by the capping of the polycyclic borate anion, B12O2412-, by Zn3O3 clusters. The open-framework structure of I has one-dimensional 8-membered channels wherein the water molecules reside. Formation of trimeric Zn3O3 clusters as well as the presence of boron in dual coordination, both triangular and tetrahedral, are important structural features of this new zincoborate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite ionic conductors based on magnesium salts and sol-gel derived silicate-tetraethylene glycol hybrids have been synthesized. The structure of these materials has been studied by FT-IR, FT-Raman, Si-29 and C-13 NMR and XRD techniques. The composite systems can be best described as diphasic with silicate as filters in the organic phase that provides solubility of the ionic dispersants. The ionic interactions in the matrix are clearly observed in the FT-Raman spectra. The ionic conductivity is determined to be of the order of 10(-7) to 10(-5) S cm(-1) at room temperature for MgCl2 and Mg(ClO4)(2) salts respectively. The conductivity reaches 10(-4) and 10(-3) S cm(-1) at 80degreesC respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copolymers of aniline and ortholmeta-amino benzoic acid were synthesized by chemical polymerization using an inverse emulsion pathway. The copolymers are soluble in organic solvents, and the solubility increases with the amino benzoic acid content in the feed. The reaction conditions were optimized with emphasis on high yield and relatively good conductivity (2.5 X 10(-1) S cm(-1)). The copolymers were characterized by a number of techniques including UV-vis, FT-IR, FT-Raman, EPR and NNM spectroscopy, thermal analysis, SEM and conductivity. The influence of the carboxylic acid group ring substituent on the copolymers is investigated. The spectral studies reveal that the amino benzoic acid groups restrict the conjugation along the polymer chain. The SEM micrographs of the copolymers reveal regions of amorphous and crystalline domain. Thermal studies indicate a marginally higher thermal stability for poly(aniline-co-m-amino benzoic acid) compared to poly(aniline-co-o-amino benzoic acid). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of high-martensite dual-phase (HMDP) steels exhibiting a 0.3 to 0.8 volume fraction of martensite (V m ), produced by intermediate quenching (IQ) of a vanadium and boron-containing microalloyed steel, have been studied for toughness and fatigue behavior to supplement the contents of a recent report by the present authors on the unusual tensile behavior of these steels. The studies included assessment of the quasi-static and dynamic fracture toughness and fatigue-crack growth (FCG) behavior of the developed steels. The experimental results show that the quasi-static fracturetoughness (K ICV ) increases with increasing V m in the range between V m =0.3 and 0.6 and then decreases, whereas the dynamic fracture-toughness parameters (K ID , K D , and J ID ) exhibit a significant increase in their magnitudes for steels containing 0.45 to 0.60 V m before achieving a saturation plateau. Both the quasi-static and dynamic fracture-toughness values exhibit the best range of toughnesses for specimens containing approximately equal amounts of precipitate-free ferrite and martensite in a refined microstructural state. The magnitudes of the fatigue threshold in HMDP steels, for V m between 0.55 and 0.60, appear to be superior to those of structural steels of a similar strength level. The Paris-law exponents (m) for the developed HMDP steels increase with increasing V m , with an attendant decrease in the pre-exponential factor (C).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticle synthesis in a microemulsion route is typically controlled by changing the water to surfactant ratio, concentration of precursors, and/or concentration of micelles. The experiments carried out in this work with chloroauric acid and hydrazine hydrate as precursors in water/AOT-Brij30/isooctane microemulsions show that the reagent addition rate can also be used to tune the size of stable spherical gold nanoparticles to some extent. The particle size goes through a minimum with variation in feed addition rate. The increase in particle size with an increase in reaction temperature is in agreement with an earlier report. A population balance model is used to interpret the experimental findings. The reduced extent of nucleation at low feed addition rates and suppression of nucleation due to the finite rate of mixing at higher addition rates produce a minimum in particle size. The increase in particle size at higher reaction temperatures is explained through an increase in fusion efficiency of micelles which dissipates supersaturation; increase in solubility is shown to play an insignificant role. The moderate polydispersity of the synthesized particles is due to the continued nucleation and growth of particles. The polydispersity of micelle sizes by itself plays a minor role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The equilibrium solubilities of dihydroxy benzene isomers (resorcinol and pyrocatechol) and its mixture were experimentally determined at different temperatures (308, 318, 328, and 338 K) in the pressure range of 9.8-16.2 MPa. In the ternary system, the solubilities of pyrocatechol increased while the solubilities of resorcinol decreased relative to their binary solubilities. A new association model was developed based on the concept of formation of solvate complex molecules to correlate the solubility of the solid for mixed solids in supercritical carbon dioxide (SCCO(2)). The model equation relates the solubility of solute in terms of the cosolute composition, temperature, pressure and density of SCCO(2). The proposed model correlated the solubilities of sixteen solid systems taken from the literature and current experimental data with an average absolute relative deviation (AARD) of around 4%. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of segregation and its influence on microstructural and phase evolution have been studied in MgO–MgAl2O4 powders synthesized by thermal decomposition of aqueous nitrate precursors. When the nitrate solutions of Mg and Al were spray-pyrolyzed on a substrate held at 673 or 573 K, homogeneous mixed oxides were produced. Spraying and drying the nitrate solutions at 473 K resulted in the formation of compositionally inhomogeneous, segregated oxide mixtures. It is suggested that segregation in the dried powders was caused by the difference in solubility of the individual nitrate salts in water which caused Mg-rich and Al-rich salts to precipitate during dehydration of the solutions. The occurrence of segregation in the powders sprayed at 473 K and not 573 or 673 K is ascribed to the sluggish rate at which the early stages of decomposition occurred during which the cations segregated. The phase evolution in segregated and segregation-free MgO–MgAl2O4 powders has been compared. The distinguishing feature of the segregated powders was the appearance of stoichiometric periclase grain dimensions in excess of 0.3 μm at temperatures as low as 973 K. By comparison, the segregation-free powders displayed broad diffraction peaks corresponding to fine-grained and nonstoichiometric periclase. The grain size was in the range 5–30 nm at temperatures up to 1173 K. The key to obtaining fine-grained periclase was the ability to synthesize (Mg Al)O solid solutions with the rock salt structure. In the temperature range 973–1173 K, spinel grain size varied from 5 to 40 nm irrespective of its composition and did not appear to be influenced by segregation.