995 resultados para Bone Lead


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone as most of living tissues is able, during its entire lifetime, to adapt its internal microstructure and subsequently its associated mechanical properties to the specific mechanical and physiological environment in a process commonly known as bone remodelling. Bone is therefore continuously renewed and microdamage removed minimizing the risk of fracture. Bone remodelling is controlled by mechanical and metabolical stimuli. In this paper, we introduce a new model of bone remodelling that takes into account both types of influences. The predicted results show a good correspondence with experimental and clinical data. For example, in disuse, bone porosity increases until an equilibrium situation, while, in overloading, decreases unless the damage rate is so high that causes resorption and "stress fracture". This model has been employed to predict bone adaptation in the proximal femur after total hip replacement proving its consistence and good correspondence with well-known clinical experiences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation is a popular technique for measuring the intrinsic mechanical response of bone and has been used to measure a single-valued elastic modulus. However, bone is a composite material with 20-80 nm hydroxyapatite plates embedded in a collagen matrix, and modern instrumentation allows for measurements at these small length scales. The present study examines the indentation response of bone and artificial gelatin-apatite nanocomposite materials across three orders of magnitude of lengthscale, from nanometers to micrometers, to isolate the composite phase contributions to the overall response. The load-displacement responses were variable and deviated from the quadratic response of homogeneous materials at small depths. The distribution of apparent elastic modulus values narrowed substantially with increasing indentation load. Indentation of particulate nanocomposites was simulated using finite element analysis. Modeling results replicated the convergence in effective modulus seen in the experiments. It appears that the apatite particles are acting as the continuous ("matrix") phase in bone and nanocomposites. Copyright © 2004 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical indentation creep testing was used to examine the effect of hydration state on bone mechanical properties. Analysis of creep data was based on the elastic-viscoelastic correspondence principle and utilized a direct solution for the finite loading-rate experimental conditions. The zero-time shear modulus was computed from the creep compliance function and compared to the indentation modulus obtained via conventional indentation analysis, based on an elastic unloading response. The method was validated using a well-known polymer material under three different loading conditions. The method was applied to bone samples prepared with different water content by partial exchange with ethanol, where 70% ethanol was considered as the baseline condition. A hydration increase was associated with a 43% decrease in stiffness, while a hydration decrease resulted in a 20% increase in bone tissue stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complications of impaction bone grafting in revision hip replacement includes fracture of he femur and subsidence of the prosthesis. In this in vitro study we aimed to investigate whether the use of vibration, combined with a perforated tamp during the compaction of morsellised allograft would reduce peak loads and hoop strains in the femur as a surrogate marker of the risk of fracture and whether it would also improve graft compaction and prosthetic stability. We found that the peak loads and hoop strains transmitted to the femoral cortex during graft compaction and subsidence of the stem in subsequent mechanical testing were reduced. This innovative technique has the potential to reduce the risk of intra-operative fracture and to improve graft compaction and therefore prosthetic stability. © 2007 British Editorial Society of Bone and Joint Surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is an anisotropic material, and its mechanical properties are determined by its microstructure as well as its composition. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Water plays an important role in maintaining the mechanical integrity of the composite, but the manner in which water interacts within the ultrastructure is unclear. Dentine being an isotropic two-dimensional structure presents a homogenous composite to examine the dehydration effects. Nanoindentation methods for determining the viscoelastic properties have recently been developed and are a subject of great interest. Here, one method based on elastic-viscoelastic correspondence for 'ramp and hold' creep testing (Oyen, J. Mater. Res., 2005) has been used to analyze viscoelastic behavior of polymeric and biological materials. The method of 'ramp and hold' allows the shear modulus at time zero to be determined from fitting of the displacement during the maximum load hold. Changes in the viscoelastic properties of bone and dentine were examined as the material was systematically dehydrated in a series of water:solvent mixes. Samples of equine dentine were sectioned and cryo-polished. Shear modulus was obtained by nanoindentation using spherical indenters with a maximum load hold of 120s. Samples were tested in different solvent concentrations sequentially, 70% ethanol to 50% ethanol, 70 % ethanol to 100% ethanol, 70% ethanol to 70% methanol to 100% methanol, and 70% ethanol to 100% acetone, after storage in each condition for 24h. By selectively removing and then replacing water from the composite, insights in to the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined moduli, as well as an understanding of the complete reversibility of the dehydration process. © 2006 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory based 2 x 2 factorial experiment was conducted to investigate the influences of dietary phosphorus and zinc levels on growth and bone mineralization in fingerlings of rainbow trout for 21 weeks. Two levels of phosphorus (19 and 30 mg/g) and two levels of zinc (55 and 103 Ag/g) in the dry diets were tested. Duplicate tanks of 30 rainbow trout (average weight 1.56 ± 0.24 g) per 60L glass tank were fed experimental diets three times a day to apparent satiation level at 15 to 24°C water temperature. The results of the present study demonstrated that dietary phosphorus supplementation influenced the growth and bone mineralization whereas zinc levels significantly (p<0.05) influenced bone mineralization in rainbow trout. Further investigations in this area with different size and age groups of this fish are broadly needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The disulfide-bridged hendecapeptide ( CWTKSIPPKPC) loop, derived from an amphibian skin peptide, is found to have strong trypsin inhibitory capability. This loop, called the trypsin inhibitory loop ( TIL), appears to be the smallest serine protease inhib

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study to measure the heavy metal pollution level in the sediment of coastal and offshore area indicates that high concentration of heavy metals were found around Manora channel and eastern coast of Karachi. In comparison with coastal areas, relatively low concentration of heavy metals was recorded in the offshore area. The result shows that sewage and industrial wastes are the main source of heavy metal pollution in the coastal area. The concentration of heavy metals in the sediments is as follows: Chromium 10.4-33.69, nickel 13.3-47.6, lead 10.0-39.04, cadmium 0.08-0.21, zinc 7.4-73.2 and copper 9.44-18.56 mg/kg. In the offshore areas strong correlation was observed between copper and organic carbon, and calcium carbonate and cadmium. In the shore area such correlation has been recorded among nickel, chromium, zinc, and chromium and copper. The Karachi. coast is viewed as moderately polluted when compared to other continental coastal areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone plays a key role in the paleontological and archeological records and can provide insight into the biology, ecology and the environment of ancient vertebrates. Examination of bone at the tissue level reveals a definitive relationship between nanomechanical properties and the local organic content, mineral content, and microstructural organization. However, it is unclear as to how these properties change following fossilization, or diagenesis, where the organic phase is rapidly removed and the remaining mineral phase is reinforced by the deposition of apatites, calcites, and other minerals. While the process of diagenesis is poorly understood, its outcome clearly results in the potential for dramatic alteration of the mechanical response of biological tissues. In this study, fossilized specimens of mammalian long bones, collected from Colorado and Wyoming, were studied for mechanical variations. Nanoindentation performed in both longitudinal and transverse directions revealed preservation of bone's natural anisotropy as transverse modulus values were consistently smaller than longitudinal values. Additionally, modulus values of fossilized bone from 35.0 to 89.1 GPa increased linearly with logarithm of the sample's age. Future studies will aim to clarify what mechanical and material elements of bone are retained during diagenesis as bone becomes part of the geologic milieu. © 2007 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are emerging as fundamental players in the regulation of neural plasticity and in pathological conditions. Here we showed that lead (Pb2+), a well known neurotoxic metal ion, reversibly and concentration-dependently inhib

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total concentrations and chemical forms of heavy metals in sediment samples from the Gulf of Suez and the northern part of the Red Sea, collected during January 2003, were determined by atomic absorption spectrometry. Maximum concentrations of 49.56, 65.42, 33.52 and 3.52 µg/g were recorded for total Cu, Zn, Pb and Cd respectively at Adabiya location. These may reflect the high contribution of land-based activities in the northern part of the Gulf. Also, high percentages of heavy metals were found in the residual fraction (Cu=78.61, Zn=77.10 and Pb=66.80%) while a high percentage of Cd was found in the carbonate fraction (45.82%). However, few or negligible percentages were recorded in the exchangeable fractions (Cu=0.51, Zn=1.57 and Pb=1.74%). Concentration of Cd in the exchangeable fraction was too low to be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous observations in clinical and preclinical studies indicate that the developing brain is particular sensitive to lead (Pb)'s pernicious effects. However, the effect of gestation-only Pb exposure on cognitive functions at maturation has not been studied. We investigated the potential effects of three levels of Pb exposure (low, middle, and high Pb: 0.03%, 0.09%, and 0.27% of lead acetate-containing diets) at the gestational period on the spatial memory of young adult offspring by Morris water maze spatial learning and fixed location/visible platform tasks. Our results revealed that three levels of Pb exposure significantly impaired memory retrieval in male offspring, but only female offspring at low levels of Pb exposure showed impairment of memory retrieval. These impairments were not due to the gross disturbances in motor performance and in vision because these animals performed the fixed location/visible platform task as well as controls, indicating that the specific aspects of spatial learning/memory were impaired. These results suggest that exposure to Pb during the gestational period is sufficient to cause long-term learning/memory deficits in young adult offspring. (C) 2003 Elsevier Inc. All rights reserved.