1000 resultados para Blood accusation
Resumo:
BACKGROUND AND OBJECTIVE: Restless legs syndrome (RLS) is a frequent condition with a prevalence of 5-15% in the general population. Clinical and genetic observations have shown that iron deficiency, highly prevalent among blood donors, can be related to RLS. The objective of this study was to assess the prevalence of RLS in female blood donors 1 week after blood donation. METHODS: One week after blood donation, 291 female blood donors, aged <50 years, self-responded to all four RLS questions defined by the 1995 International RLS study group. Blood donation rate, fatigue, aerobic capacity, menstruation, mood disorder and quality of life were also assessed along with haemoglobin and ferritin blood concentrations. RESULTS: Prevalence of RLS in female blood donors 1 week after blood donation was 6·9% (CI 95% 4·2-10·4%). Female blood donors with RLS had a higher prevalence of hyper-menorrhaea (P = 0·033) and were significantly more tired (P = 0·001). We observed no associations between RLS and number of previous donations (P = 0·409), aerobic capacity (P = 0·476), mood disorder (P = 0·169), quality of life (P = 0·356), haemoglobin (P = 0·087), and serum ferritin level (P = 0·446). CONCLUSION: Restless legs syndrome prevalence in female blood donors is not as important as described in some other studies, which could reassure blood donors. The prevalence of hypermenorrhaea and fatigue is higher in RLS blood donors. Therefore, screening for fatigue and hypermenorrhaea could be considered as these symptoms are associated with RLS in female blood donors.
Resumo:
According to recent international guidelines, 24-h ambulatory blood pressure monitoring plays an important role in the diagnostic and therapeutic approach of arterial hypertension. Indications of this technique are multiple, concerning both day- and night-time blood pressures. Blood pressures provided by ambulatory monitoring may be used to stratify cardiovascular risk.
Resumo:
All major antihypertensive drug classes i.e. diuretics, beta-blockers, calcium antagonists and blockers of the renin-angiotensin system have been shown to effectively lower blood pressure and hence to reduce cardiovascular outcomes in hypertensive patients. These drugs decrease cardiovascular complications in hypertension essentially because they reduce systemic blood pressure. Nevertheless, there is growing evidence that the extent of the benefits differed between drug classes suggesting that the various classes of antihypertensive agents are not equivalent in their ability to protect against target organ damages and cardiovascular and renal endpoints. More recently, evidence has also accumulated to demonstrate that even combination therapies are not equally effective in reducing the occurrence of cardiovascular complications in hypertension. These recent observations suggest that the means to lower blood pressure are as important as the achieved target blood pressure in the management of hypertensive patients.
Resumo:
Effet d'un bolus intraveineux de phénylephrine ou d'éphedríne sur le flux sanguin cutané lors d'une anesthésie rachidienne Introduction : La phénylephrine et l'éphedrine sont des substances vaso-actives utilisées de routine pour corriger des épisodes d'hypotension artérielle induits par l'anesthésie intrarachidienne. L'influence de ces deux vasopresseurs sur le flux sanguin cutané (FSC) dans ce contexte n'a jusqu'à maintenant pas été décrite. Cette étude évalue l'effet d'une injection intraveineuse de 75 µg de phénylephrine ou de 7.5 mg d'éphedrine sur le FSC mesuré par Laser Doppler, dans les zones concernées parle bloc sympathiqué induit par l'anesthésie intrarachidienne (membres inférieurs) et dans les zones non concernées (membres supérieurs). Méthode :Après acceptation par le Comité d'Éthique, et obtention de leur accord écrit, 20 patients devant subir une intervention chirurgicale élective en décubitus dorsal sous anesthésie. intrarachidienne ont été inclus dans cette étude randomisée en double insu. Le FSC a été mesuré en continu par deux sondes fixées l'une à la cuisse (zone avec bloc sympathique) et l'autre sur l'avantbras (zone sans bloc sympathique). Les valeurs de FSC ont été enregistrées après l'anesthésie rachidienne (valeur contrôle), puis après l'injection i.v. dè phénylephrine (10 patients) ou d'éphedrine (10 patients) pour corriger une hypotension définie comme une chute de 20 mmHg de la pression artérielle systolique. Les variations de FSC exprimées en pourcentage de la valeur contrôle moyenne (+/- écart type) ont été analysées par le test t de Student. Résultats :Les données démographiques des patients et le niveau sensitif induit par l'anesthésie rachidienne sont similaires dans les deux groupes. Aux doses utilisées, seule l'éphedrine restaure la pression artérielle aux valeurs précédant l'anesthésie rachidienne. La phénylephrine augmente le FSC de l'avant-bras de 44% (+/- 79%) et de la cuisse de 34% (+/-24%), alors que l'éphedrine diminue le débit sanguin cutané de l'avant-bras de 16% (+/- 15%) et de la cuisse de 22% (+/-11%). Conclusion : L'injection intraveineuse de phénylephrine et d'éphedrine ont des effets opposés sur le flux sanguin cutané, et cette réponse n'est pas modifiée par le bloc sympathique.. Cette différence peut s'expliquer par la distribution des sous-types de récepteurs adrénergiques alpha et leur prédominance relative dans les veines et les artères de différents diamètres perfusant le tissu sous-cutané et la peau. L'éphedrine, èn raison de sa meilleure efficacité pour traiter les épisodes d'hypotension artérielle après anesthésie intrarachidienne devrait être préféré à la phénylephrine, leurs effets opposés sur le flux sanguin cutané n'étant pas pertinents en pratique clinique. SUMMARY Background: Phenylephrine or ephedrine is routinely used to correct hypotensive episodes fallowing spinal anaesthesia (SA). The influence of these two vasopressors on skin blood flow (SBF) has not yet been described. We have therefore evaluated the effects of an i.v. bolus of 75 µg phenylephrine or 7.5 mg of ephedrine on SBF measured by laser Doppler flowmetry during sympathetic blockade induced by SA. Methods: With Ethical Committee approval and written consent, 20 patients scheduled for elective procedures in supine position under SA were enrolled in this double-blind randomized study. SBF was measured continuously by two probes fixed at the thigh (area with sympathic blockade) and forearm level (area without sympathic blockade) respectively. SBF values were recorded after SA (control values) and then after a bolus administration of phenylephriné (n=10) or ephedrine (n=10) when systolic blood pressure decreased by 20 mmHg. Changes were expressed as percentage of control SBF values and analysed by Student's paired t-test. Results: Patient characteristics and dermatomal sensory levels were similar in both groups. Phenylephrine increases mean SBF at the forearm level by 44% (79%) [mean (SD)j and at the thigh by 34% (24%). Ephedrine decreases SBF at the forearm level by 16% (15%) and at the thigh by 22% (il%). Ephedrine bolus restores arterial blood pressure to pre-anaesthesia values, whereas phenylephrine does not. Conclusion: Administratión of phenylephrine and ephedrine has opposite effects on skin blood flow and sympathetic blockade does not modify this response. These findings could be explained by the distribution of the alpha-adrenoréceptor subtypes and their relative predominance among veins and arteries of different size perfusing the subcutaneous tissue and the skin. Ephedrine, due to its better efficacy to correct hypotensive episodes following SA, should be preferred, to phenylephrine, their opposite effects on SBF being not relevant for clinical practice.
Resumo:
Specialized glucosensing neurons are present in the hypothalamus, some of which neighbor the median eminence, where the blood-brain barrier has been reported leaky. A leaky blood-brain barrier implies high tissue glucose levels and obviates a role for endothelial glucose transporters in the control of hypothalamic glucose concentration, important in understanding the mechanisms of glucose sensing We therefore addressed the question of blood-brain barrier integrity at the hypothalamus for glucose transport by examining the brain tissue-to-plasma glucose ratio in the hypothalamus relative to other brain regions. We also examined glycogenolysis in hypothalamus because its occurrence is unlikely in the potential absence of a hypothalamus-blood interface. Across all regions the concentration of glucose was comparable at a given plasma glucose concentration and was a near linear function of plasma glucose. At steady-state, hypothalamic glucose concentration was similar to the extracellular hypothalamic glucose concentration reported by others. Hypothalamic glycogen fell at a rate of approximately 1.5 micromol/g/h and remained present in substantial amounts. We conclude for the hypothalamus, a putative primary site of brain glucose sensing that: the rate-limiting step for glucose transport into brain cells is at the blood-hypothalamus interface, and that glycogenolysis is consistent with a substantial blood -to- intracellular glucose concentration gradient.
Resumo:
OBJECTIVE: Current hypertension guidelines stress the importance to assess total cardiovascular risk but do not describe precisely how to use ambulatory blood pressures in the cardiovascular risk stratification. METHOD: We calculated here global cardiovascular risk according to 2003 European Society of Hypertension/European Society of Cardiology guidelines in 127 patients in whom daytime ambulatory blood pressures were recorded and carotid/femoral ultrasonography performed. RESULTS: The presence of ambulatory blood pressures >or =135/85 mmHg shifted cardiovascular risk to higher categories, as did the presence of hypercholesterolemia and, even more so, the presence of atherosclerotic plaques. CONCLUSION: Further studies are, however, needed to define the position of ambulatory blood pressures in the assessment of cardiovascular risk.
Resumo:
Microparticles are phospholipid vesicles shed mostly in biological fluids, such as blood or urine, by various types of cells, such as red blood cells (RBCs), platelets, lymphocytes, endothelial cells. These microparticles contain a subset of the proteome of their parent cell, and their ready availability in biological fluid has raised strong interest in their study, as they might be markers of cell damage. However, their small size as well as their particular physico-chemical properties makes them hard to detect, size, count and study by proteome analysis. In this review, we report the pre-analytical and methodological caveats that we have faced in our own research about red blood cell microparticles in the context of transfusion science, as well as examples from the literature on the proteomics of various kinds of microparticles.
Resumo:
ABSTRACT: Iron deficiency without anemia (IDWA) is related to adverse symptoms that can be relieved by supplementation. Since a blood donation can induce such an iron deficiency, we investigated the clinical impact of an iron treatment after blood donation. METHODS: One week after donation, we randomly assigned 154 female donors with IDWA aged <50 years to a 4-week oral treatment of ferrous sulfate vs. placebo. The main outcome was the change in the level of fatigue before and after the intervention. Also evaluated were aerobic capacity, mood disorder, quality of life, compliance and adverse events. Biological markers were hemoglobin and ferritin. RESULTS: Treatment effect from baseline to 4 weeks for hemoglobin and ferritin were 5.2 g/L (p < 0.01) and 14.8 ng/mL (p < 0.01) respectively. No significant clinical effect was observed for fatigue (-0.15 points, 95% confidence interval -0.9 to 0.6, p = 0.697) or for other outcomes. Compliance and interruption for side effects was similar in both groups. Additionally, blood donation did not induce overt symptoms of fatigue in spite of the significant biological changes it produces. CONCLUSIONS: These data are valuable as they enable us to conclude that donors with IDWA after a blood donation would not clinically benefit from iron supplementation. Trial registration: NCT00689793.
Resumo:
Euglycemic hyperinsulinemia stimulates both sympathetic nerve activity and blood flow to skeletal muscle, but the mechanism is unknown. Possible mechanisms that may stimulate muscle blood flow include neural, humoral, or metabolic effects of insulin. To determine whether such insulin-induced vasodilation is modulated by stimulation of adrenergic or cholinergic mechanisms, we obtained, in eight healthy lean subjects, plethysmographic measurements of calf blood flow during 3 h of hyperinsulinemic (1 mU.kg-1.min-1) euglycemic clamp performed alone or during concomitant beta-adrenergic (propranolol infusion), cholinergic (atropine infusion), or alpha-adrenergic (prazosin administration) blockade. Euglycemic hyperinsulinemia alone increased calf blood flow by 38 +/- 10% (means +/- SE) and decreased vascular resistance by 27 +/- 4% (P < 0.01). The principal new observation is that these insulin-induced vasodilatory responses were not attenuated by concomitant propranolol or atropine infusion, nor were they potentiated by prazosin administration. In conclusion, these findings provide evidence that during euglycemic hyperinsulinemia in lean healthy humans stimulation of muscle blood flow is not mediated primarily by beta-adrenergic or cholinergic mechanisms. Furthermore, alpha-adrenergic mechanisms do not markedly limit insulin-induced stimulation of muscle blood flow.
Resumo:
Among numerous magnetic resonance imaging (MRI) techniques, perfusion MRI provides insight into the passage of blood through the brain's vascular network non-invasively. Studying disease models and transgenic mice would intrinsically help understanding the underlying brain functions, cerebrovascular disease and brain disorders. This study evaluates the feasibility of performing continuous arterial spin labeling (CASL) on all cranial arteries for mapping murine cerebral blood flow at 9.4 T. We showed that with an active-detuned two-coil system, a labeling efficiency of 0.82 ± 0.03 was achieved with minimal magnetization transfer residuals in brain. The resulting cerebral blood flow of healthy mouse was 99 ± 26 mL/100g/min, in excellent agreement with other techniques. In conclusion, high magnetic fields deliver high sensitivity and allowing not only CASL but also other MR techniques, i.e. (1)H MRS and diffusion MRI etc, in studying murine brains.
Resumo:
Context There are no evidence syntheses available to guide clinicians on when to titrate antihypertensive medication after initiation. Objective To model the blood pressure (BP) response after initiating antihypertensive medication. Data sources electronic databases including Medline, Embase, Cochrane Register and reference lists up to December 2009. Study selection Trials that initiated antihypertensive medication as single therapy in hypertensive patients who were either drug naive or had a placebo washout from previous drugs. Data extraction Office BP measurements at a minimum of two weekly intervals for a minimum of 4 weeks. An asymptotic approach model of BP response was assumed and non-linear mixed effects modelling used to calculate model parameters. Results and conclusions Eighteen trials that recruited 4168 patients met inclusion criteria. The time to reach 50% of the maximum estimated BP lowering effect was 1 week (systolic 0.91 weeks, 95% CI 0.74 to 1.10; diastolic 0.95, 0.75 to 1.15). Models incorporating drug class as a source of variability did not improve fit of the data. Incorporating the presence of a titration schedule improved model fit for both systolic and diastolic pressure. Titration increased both the predicted maximum effect and the time taken to reach 50% of the maximum (systolic 1.2 vs 0.7 weeks; diastolic 1.4 vs 0.7 weeks). Conclusions Estimates of the maximum efficacy of antihypertensive agents can be made early after starting therapy. This knowledge will guide clinicians in deciding when a newly started antihypertensive agent is likely to be effective or not at controlling BP.
Resumo:
Ubiquitylation is crucial for regulating numerous cellular functions. In the kidney, ubiquitylation regulates the epithelial Na(+) channel ENaC. The importance of this process is highlighted in Liddle's syndrome, where mutations interfere with ENaC ubiquitylation, resulting in constitutive Na(+) reabsorption and hypertension. There is emerging evidence that NCC, involved in hypertensive diseases, is also regulated by ubiquitylation. Here, we discuss the current knowledge and recent findings in this field.
Resumo:
Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.