956 resultados para Bivariate Gaussian distribution
Resumo:
In this paper we introduce a nonlinear detector based on the phenomenon of suprathreshold stochastic resonance (SSR). We first present a model (an array of 1-bit quantizers) that demonstrates the SSR phenomenon. We then use this as a pre-processor to the conventional matched filter. We employ the Neyman-Pearson(NP) detection strategy and compare the performances of the matched filter, the SSR-based detector and the optimal detector. Although the proposed detector is non-optimal, for non-Gaussian noises with heavy tails (leptokurtic) it shows better performance than the matched filter. In situations where the noise is known to be leptokurtic without the availability of the exact knowledge of its distribution, the proposed detector turns out to be a better choice than the matched filter.
Resumo:
Non-Gaussianity of signals/noise often results in significant performance degradation for systems, which are designed using the Gaussian assumption. So non-Gaussian signals/noise require a different modelling and processing approach. In this paper, we discuss a new Bayesian estimation technique for non-Gaussian signals corrupted by colored non Gaussian noise. The method is based on using zero mean finite Gaussian Mixture Models (GMMs) for signal and noise. The estimation is done using an adaptive non-causal nonlinear filtering technique. The method involves deriving an estimator in terms of the GMM parameters, which are in turn estimated using the EM algorithm. The proposed filter is of finite length and offers computational feasibility. The simulations show that the proposed method gives a significant improvement compared to the linear filter for a wide variety of noise conditions, including impulsive noise. We also claim that the estimation of signal using the correlation with past and future samples leads to reduced mean squared error as compared to signal estimation based on past samples only.
Resumo:
The aim of the current study is to examine the influence of the channel external environment on power, and the effect of power on the distribution network structure within the People’s Republic of China. Throughout the study a dual research process was applied. The theory was constructed by elaborating the main theoretical premises of the study, the channel power theories, the political economy framework and the distribution network structure, but these marketing channel concepts were expanded with other perspectives from other disciplines. The main method applied was a survey conducted among 164 Chinese retailers, complemented by interviews, photographs, observations and census data from the field. This multi-method approach enabled not only to validate and triangulate the quantitative results, but to uncover serendipitous findings as well. The theoretical contribution of the current study to the theory of marketing channels power is the different view it takes on power. First, earlier power studies have taken the producer perspective, whereas the current study also includes a distributor perspective to the discussion. Second, many power studies have dealt with strongly dependent relationships, whereas the current study examines loosely dependent relationships. Power is dependent on unequal distribution of resources rather than based on high dependency. The benefit of this view is in realising that power resources and power strategies are separate concepts. The empirical material of the current study confirmed that at least some resources were significantly related to power strategies. The study showed that the dimension resources composed of technology, know-how and knowledge, managerial freedom and reputation was significantly related to non-coercive power. Third, the notion of different outcomes of power is a contribution of this study to the channels power theory even though not confirmed by the empirical results. Fourth, it was proposed that channel external environment other than the resources would also contribute to the channel power. These propositions were partially supported thus providing only partial contribution to the channel power theory. Finally, power was equally distributed among the different types of actors. The findings from the qualitative data suggest that different types of retailers can be classified according to the meaning the actors put into their business. Some are more business oriented, for others retailing is the only way to earn a living. The findings also suggest that in some actors both retailing and wholesaling functions emerge, and this has implications for the marketing channels structure.
Resumo:
This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.
Resumo:
The problem of detecting an unknown transient signal in noise is considered. The SNR of the observed data is first enhanced using wavelet domain filter The output of the wavelet domain filter is then transformed using a Wigner-Ville transform,which separates the spectrum of the observed signal into narrow frequency bands. Each subband signal at the output of the Wigner-ville block is subjected kto wavelet based level dependent denoising (WBLDD)to supress colored noise A weighted sum of the absolute value of outputs of WBLDD is passed through an energy detector, whose output is used as test statistic to take the final decision. By assigning weights proportional to the energy of the corresponding subband signals, the proposed detector approximates a frequency domain matched filter Simulation results are presented to show that the performance of the proposed detector is better than that of the wavelet packet transform based detector.
Resumo:
Constellation Constrained (CC) capacity regions of a two-user Gaussian Multiple Access Channel(GMAC) have been recently reported. For such a channel, code pairs based on trellis coded modulation are proposed in this paper with MPSK and M-PAM alphabet pairs, for arbitrary values of M,toachieve sum rates close to the CC sum capacity of the GMAC. In particular, the structure of the sum alphabets of M-PSK and M-PAMmalphabet pairs are exploited to prove that, for certain angles of rotation between the alphabets, Ungerboeck labelling on the trellis of each user maximizes the guaranteed squared Euclidean distance of the sum trellis. Hence, such a labelling scheme can be used systematically,to construct trellis code pairs to achieve sum rates close to the CC sum capacity. More importantly, it is shown for the first time that ML decoding complexity at the destination is significantly reduced when M-PAM alphabet pairs are employed with almost no loss in the sum capacity.
Resumo:
Deterministic models have been widely used to predict water quality in distribution systems, but their calibration requires extensive and accurate data sets for numerous parameters. In this study, alternative data-driven modeling approaches based on artificial neural networks (ANNs) were used to predict temporal variations of two important characteristics of water quality chlorine residual and biomass concentrations. The authors considered three types of ANN algorithms. Of these, the Levenberg-Marquardt algorithm provided the best results in predicting residual chlorine and biomass with error-free and ``noisy'' data. The ANN models developed here can generate water quality scenarios of piped systems in real time to help utilities determine weak points of low chlorine residual and high biomass concentration and select optimum remedial strategies.
Resumo:
Detailed investigation of the charge density distribution in concomitant polymorphs of 3-acetylcoumarin in terms of experimental and theoretical densities shows significant differences in the intermolecular features when analyzed based on the topological properties via the quantum theory of atoms in molecules. The two forms, triclinic and monoclinic (Form A and Form B), pack in the crystal lattice via weak C-H---O and C-H---pi interactions. Form A results in a head-to-head molecular stack, while Form B generates a head-to-tail stack. Form A crystallizes in PI (Z' = 2) and Form B crystallizes in P2(1)/n (Z = 1). The electron density maps of the polymorphs demonstrate the differences in the nature of the charge density distribution in general. The charges derived from experimental and theoretical analysis show significant differences with respect to the polymorphic forms. The molecular dipole moments differ significantly for the two forms. The lattice energies evaluated at the HF and DFT (B3LYP) methods with 6-31G** basis set for the two forms clearly suggest that Form A is the thermodynamically stable form as compared to Form B. Mapping of electrostatic potential over the molecular surface shows dominant variations in the electronegative region, which bring out the differences between the two forms.
Resumo:
A detailed characterization of interference power statistics in CDMA systems is of considerable practical and theoretical interest. Such a characterization for uplink inter-cell interference has been difficult because of transmit power control, randomness in the number of interfering mobile stations, and randomness in their locations. We develop a new method to model the uplink inter-cell interference power as a lognormal distribution, and show that it is an order of magnitude more accurate than the conventional Gaussian approximation even when the average number of mobile stations per cell is relatively large and even outperforms the moment-matched lognormal approximation considered in the literature. The proposed method determines the lognormal parameters by matching its moment generating function with a new approximation of the moment generating function for the inter-cell interference. The method is tractable and exploits the elegant spatial Poisson process theory. Using several numerical examples, the accuracy of the proposed method in modeling the probability distribution of inter-cell interference is verified for both small and large values of interference.
Resumo:
Given an n x n complex matrix A, let mu(A)(x, y) := 1/n vertical bar{1 <= i <= n, Re lambda(i) <= x, Im lambda(i) <= y}vertical bar be the empirical spectral distribution (ESD) of its eigenvalues lambda(i) is an element of C, i = l, ... , n. We consider the limiting distribution (both in probability and in the almost sure convergence sense) of the normalized ESD mu(1/root n An) of a random matrix A(n) = (a(ij))(1 <= i, j <= n), where the random variables a(ij) - E(a(ij)) are i.i.d. copies of a fixed random variable x with unit variance. We prove a universality principle for such ensembles, namely, that the limit distribution in question is independent of the actual choice of x. In particular, in order to compute this distribution, one can assume that x is real or complex Gaussian. As a related result, we show how laws for this ESD follow from laws for the singular value distribution of 1/root n A(n) - zI for complex z. As a corollary, we establish the circular law conjecture (both almost surely and in probability), which asserts that mu(1/root n An) converges to the uniform measure on the unit disc when the a(ij) have zero mean.
Resumo:
A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.
Resumo:
The probability distribution of the instantaneous incremental yield of an inelastic system is characterized in terms of a conditional probability and average rate of crossing. The detailed yield statistics of a single degree-of-freedom elasto-plastic system under a Gaussian white noise are obtained for both nonstationary and stationary response. The present analysis indicates that the yield damage is sensitive to viscous damping. The spectra of mean and mean square damage rate are presented.
Resumo:
When the size (L) of a one-dimensional metallic conductor is less than the correlation length λ-1 of the Gaussian random potential, one expects transport properties to show ballistic behaviour. Using an invariant imbedding method, we study the exact distribution of the resistance, of the phase θ of the reflection amplitude of an incident electron of wave number k0, and of dθ/dk0, for λL ll 1. The resistance is non-self-averaging and the n-th resistance moment varies periodically as (1 - cos 2k0L)n. The charge fluctuation noise, determined by the distribution of dθ/dk0, is constant at low frequencies.