943 resultados para Biotechnology laboratories
Resumo:
Suspension cultures of Catharanthus roseus were used to evaluate ultraviolet-B (UV-B) treatment as an abiotic elicitor of secondary metabolites. A dispersed cell suspension culture from C. roseus leaves in late exponential phase and stationary phase were irradiated with UV-B for 5 min. The stationary phase cultures were more responsive to UV-B irradiation than late exponential phase cultures. Catharanthine and vindoline increased 3-fold and 12-fold, respectively, on treatment with a 5-min UV-B irradiation.
Resumo:
Total tRNA isolated from cucumber cotyledons grown in the presence of radioactive sulfur was analyzed for the occurrence of thionucleosides. The analysis revealed the presence of at least five thionucleosides which were identified as 5-methylaminomethyl-2-thiouridine (mnm5s2U), 2-methylthio-N6-isopentenyladenosine (ms2i6A), 2-methylthio-N6-hydroxyisopentenyladenosine (ms2io6A), 5-methyl-2-thiouridine (m5s2U) and N-[(9-beta-ribofuranosyl-2- methylthiopurine-2-yl)-carbamoyl]-threonine (ms2t6A). A comparison of relative amounts of these thionucleosides in the total tRNAs of dark-, and light-grown cotyledons shows that the relative amounts of ms2i6A, ms2io6A and ms2t6A remain unchanged whereas mnm5s2U increases with a concomitant decrease in the relative amounts of m5s2U after light treatment of dark-grown cotyledons.
Resumo:
Antibodies specific for N6-(delta 2-isopentenyl) adenosine (i6A) were immobilized on Sepharose and this adsorbent (Sepharose-anti-i6A) was used to selectively isolate bacteriophage T4 tRNA precursors containing i6A/ms2i6A from an unfractionated population of 32P-labeled T4 RNAs. The results showed that antibodies to i6A selectively bound only those tRNA precursors containing i6A/ms2i6A. Binding of tRNA precursors by antibody and specificity of the binding was assessed by membrane binding using 32P-labeled tRNA precursor. Binding was highly specific for i6A/ms2i6A residues in the tRNA precursors. This binding can be used to separate modified from unmodified precursor RNAs and to study the biosynthetic pathways of tRNA precursors.
Resumo:
Antibodies specific for 1-methylguanosine (m1G) were produced by immunization of rabbits with a bovine serum albumin conjugate of m1G. Antibodies specificity was determined by measuring the inhibition of binding of 3H-m1G trialcohol by various nucleosides or related derivatives. The relative affinities of the unpurified antibodies for various nucleosides showed that m1G trialcohol had an 8-fold higher affinity than m1G; further, guanosine and 2'-O-methylguanosine had at least a 500-fold lower affinity than m1G. The antibodies were purified on m1G-AH-Sepharose column and subsequently immobilized to Sepharose. Immobilized m1G antibodies quantitatively and exclusively retained m1G-containing oligonucleotides derived from ribonuclease A digests of 32P-labeled phage T4 tRNAPro. On the other hand, intact 32P-labeled T4 tRNAPro or its precursor RNA(s) did not bind to the same column. These findings indicate that at least a portion of m1G adjacent to the 3' end of the anticodon in intact T4 tRNAPro is not accessible for antibody binding.
Resumo:
A versatile affinity matrix in which the ligand of interest is linked to the matrix through a connector arm containing a disulfide bond is described. It can be synthesized from any amino-substituted matrix by successive reaction with 2-imino-thio-lane, 5, 5'-dithiobis(2-nitrobenzoic acid), and a thiol derivative of the ligand of choice. The repertoire of ligands can be significantly increased by the appropriate use of avidin-biotin bridges. After adsorption of the material to be fractionated, elution can be effected by reducing the disulfide bond in the connector arm with dithiothreitol. Examples of the preparation and use of various affinity matrices based on amino-substituted Sepharose 6MB are given. One involves the immobilization of the Fab' fragment of a monoclonal antibody against Aspergillus oryzae β-galactosidase and the specific binding of that enzyme to the resulting immunoaffinity matrix. Another involves the immobilization of N-biotinyl-2-thioethylamine followed by complex formation with avidin. The resulting avidin-substituted matrix was used for the selective adsorption and subsequent recovery of mouse hybridoma cells producing anti-avidin antibodies. By further complexing the avidin-substituted matrix with appropriate biotinylated antigens, it should be possible to fractionate cells producing antibodies against a variety of antigens.
Resumo:
The relative amounts of chloroplast tRNAs(Leu), tRNA(Glu), tRNA(Phe), tRNAs(Thr), and tRNA(Tyr) and of chloroplastic and cytoplasmic aminoacyl-tRNA synthetases were compared in green leaves, yellowing senescing leaves, and N(6)-benzyladenine-treated senescing leaves from bean (Phaseolus vulgaris, var Contender). Aminoacylation of the tRNAs using Escherichia coli aminoacyl-tRNA synthetases indicated that in senescing leaves the relative amount of chloroplast tRNA(Phe) was significantly lower than in green leaves. Senescing leaves treated with N(6)-benzyladenine contained higher levels of this tRNA than untreated senescing leaves. No significant change in the relative amounts of chloroplast tRNAs(Leu), tRNAs(Thr), and tRNA(Tyr) was detected in green, yellow senescing, or N(6)-benzyladine-treated senescing leaves. Relative levels of chloroplast tRNAs were also estimated by hybridization of tRNAs to DNA blots of gene specific probes. These experiments confirmed the results obtained by aminoacylation and revealed in addition that the relative level of chloroplast tRNA(Glu) is higher in senescing leaves than in green leaves. Transcription run-on assays indicated that these changes in tRNA levels are likely to be due to a differential rate of degradation rather than to a differential rate of transcription of the tRNA genes. Chloroplastic and cytoplasmic leucyl-, phenylalanyl-, and tyrosyl-tRNA synthetase activities were greatly reduced in senescing leaves as compared to green leaves, whereas N(6)-benzyladenine-treated senescing leaves contained higher enzyme activities than untreated senescing leaves. These results suggest that during senescence, as well as during senescence-retardation by cytokinins, changes in enzyme activities, such as aminoacyl-tRNA synthetases, rather than reduced levels of tRNAs, affect the translational capacity of chloroplasts.
Resumo:
The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the RuvA protein from Mycobacterium tuberculosis (MtRuvA) are reported. Analysis of the structure and comparison with other known RuvA proteins reveal an octameric state with conserved subunit-subunit interaction surfaces, indicating the requirement of octamer formation for biological activity. A detailed analysis of plasticity in the RuvA molecules has led to insights into the invariant and variable regions, thus providing a framework for understanding regional flexibility in various aspects of RuvA function.
Resumo:
We have purified phage lambda beta protein produced by a recombinant plasmid carrying bet gene and confirm that it forms a complex with a protein of relative molecular mass 70 kDa. Therefore, beta protein, a component of general genetic recombination, is associated with two functionally diverse complexes; one containing exonuclease and the other 70 kDa protein. Using a number of independent methods, we show that 70 kDa protein is the ribosomal S1 protein of E. coli. Further, the association of 70 kDa protein with beta protein is biologically significant, as the former inhibits joining of the terminal ends of lambda chromosome and renaturation of complementary single stranded DNA promoted by the latter. More importantly, these findings initiate an understanding of an important mode of host- virus interaction in general with specific implication(s) in homologous genetic recombination.
Resumo:
Sugarcane has garnered much interest for its potential as a viable renewable energy crop. While the use of sugar juice for ethanol production has been in practice for years, a new focus on using the fibrous co-product known as bagasse for producing renewable fuels and bio-based chemicals is growing in interest. The success of these efforts, and the development of new varieties of energy canes, could greatly increase the use of sugarcane and sugarcane biomass for fuels while enhancing industry sustainability and competitiveness. Sugarcane-Based Biofuels and Bioproducts examines the development of a suite of established and developing biofuels and other renewable products derived from sugarcane and sugarcane-based co-products, such as bagasse. Chapters provide broad-ranging coverage of sugarcane biology, biotechnological advances, and breakthroughs in production and processing techniques. This text brings together essential information regarding the development and utilization of new fuels and bioproducts derived from sugarcane. Authored by experts in the field, Sugarcane-Based Biofuels and Bioproducts is an invaluable resource for researchers studying biofuels, sugarcane, and plant biotechnology as well as sugar and biofuels industry personnel.
Resumo:
Accurate characterization and reporting of organic photovoltaic (OPV) device performance remains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using “suitcase sample” approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner.
Resumo:
Some leucine-rich repeat (LRR) -containing membrane proteins are known regulators of neuronal growth and synapse formation. In this work I characterize two gene families encoding neuronal LRR membrane proteins, namely the LRRTM (leucine-rich repeat, transmembrane neuronal) and NGR (Nogo-66 receptor) families. I studied LRRTM and NGR family member's mRNA tissue distribution by RT-PCR and by in situ hybridization. Subcellular localization of LRRTM1 protein was studied in neurons and in non-neuronal cells. I discovered that LRRTM and NGR family mRNAs are predominantly expressed in the nervous system, and that each gene possesses a specific expression pattern. I also established that LRRTM and NGR family mRNAs are expressed by neurons, and not by glial cells. Within neurons, LRRTM1 protein is not transported to the plasma membrane; rather it localizes to endoplasmic reticulum. Nogo-A (RTN4), MAG, and OMgp are myelin-associated proteins that bind to NgR1 to limit axonal regeneration after central nervous system injury. To better understand the functions of NgR2 and NgR3, and to explore the possible redundancy in the signaling of myelin inhibitors of neurite growth, I mapped the interactions between NgR family and the known and candidate NgR1 ligands. I identified high-affinity interactions between RTN2-66, RTN3-66 and NgR1. I also demonstrate that Rtn3 mRNA is expressed in the same glial cell population of mouse spinal cord white matter as Nogo-A mRNA, and thus it could have a role in myelin inhibition of axonal growth. To understand how NgR1 interacts with multiple structurally divergent ligands, I aimed first to map in more detail the nature of Nogo-A:NgR1 interactions, and then to systematically map the binding sites of multiple myelin ligands in NgR1 by using a library of NgR1 expression constructs encoding proteins with one or multiple surface residues mutated to alanine. My analysis of the Nogo-A:NgR1 -interactions revealed a novel interaction site between the proteins, suggesting a trivalent Nogo-A:NgR1-interaction. Our analysis also defined a central binding region on the concave side of NgR1's LRR domain that is required for the binding of all known ligands, and a surrounding region critical for binding MAG and OMgp. To better understand the biological role of LRRTMs, I generated Lrrtm1 and Lrrtm3 knock out mice. I show here that reporter genes expressed from the targeted loci can be used for maping the neuronal connections of Lrrtm1 and Lrrtm3 expressing neurons in finer detail. With regard to LRRTM1's role in humans, we found a strong association between a 70 kb-spanning haplotype in the proposed promoter region of LRRTM1 gene and two possibly related phenotypes: left-handedness and schizophrenia. Interestingly, the responsible haplotype was linked to phenotypic variability only when paternally inherited. In summary, I identified two families of neuronal receptor-like proteins, and mapped their expression and certain protein-protein interactions. The identification of a central binding region in NgR1 shared by multiple ligands may facilitate the design and development of small molecule therapeutics blocking binding of all NgR1 ligands. Additionally, the genetic association data suggests that allelic variation upstream of LRRTM1 may play a role in the development of left-right brain asymmetry in humans. Lrrtm1 and Lrrtm3 knock out mice developed as a part of this study will likely be useful for schizophrenia and Alzheimer s disease research.
Resumo:
Uusi hermoston rappeumasairaus MIRAS: Suomessa kantajia joka 125. väestöstä Tässä väitöskirjatyössä on kuvattu uusi peittyvästi periytyvä hermoston rappeumasairaus, MIRAS (mitochondrial recessive ataxia syndrome), ja sen geenitausta. Tauti osoittautui tutkimuksessamme Suomen yleisimmäksi perinnölliseksi ataksiasairaudeksi. Tutkimuksessa on tutkittu perinnöllisiä aivosairauksia, joissa yhtenä oireena on ataksia (kävelyn epävarmuus, tasapainovaikeus ja liikkeiden haparointi), sekä lukuisia muita aivojen toimintahäiriöstä johtuvia oireita. Seuloessamme suomalaisilta ataksiapotilailta MIRAS-geenivirhettä, 27 potilasta sai diagnoosin aikaisemmin tuntemattomalle, etenevälle ataksiasairaudelleen. Tutkimuksen tuloksena kyseisen geenivirheen DNA-diagnostiikka on otettu käyttöön suomalaisissa ja eurooppalaisissa laboratorioissa, ja toista sataa potilasta ympäri maailman on saanut diagnoosin. Suomen väestössä joka 125. kantaa MIRAS geenivirhettä, mutta taudin saa vain, jos perii geenivirheen molemmilta vanhemmiltaan. MIRAS on taudinkuvaltaan vaihteleva, mutta vaikea etenevä neurologinen sairaus. Useilla potilailla esiintyvät oireet ovat ataksia, puheen puuromaisuus (dysartria), ääreishermorappeuma (neuropatia), pakkoliikkeet, psykiatriset oireet sekä vaikea epilepsia. Erityisen tärkeää MIRAS-taudin tunnistaminen on siihen liittyvän epilepsian hoitopäätöksessä: valproaatti-lääkitys voi aiheuttaa MIRAS-potilaille vaikean maksavaurion. Väitöskirjatyön tuloksena selvisi, että kaikki suomalaiset, norjalaiset, belgialaiset, englantilaiset, australialaiset ja uusi-seelantilaiset MIRAS potilaat olivat kaukaista sukua samalle, tuhansia vuosia sitten eläneelle eurooppalaiselle esivanhemmalle. Ataksiasairauksien tautimekanismeja selvitimme tutkimalla MIRAS-ataksiaa ja sitä muistuttavaa IOSCA sairautta (infantile onset spinocerebellar ataxia), jonka aiheuttaa peittyvästi periytyvä geenivirhe Twinkle-geenissä. Tutkimuksessa löydettiin myös uusi, Twinkle-geenin geenivirheestä johtuva taudinkuva: vaikea-asteinen, varhaisella iällä alkava aivosairaus, jossa on lisäksi viitteitä maksasairaudesta. Löysimme potilaiden aivoista muutoksia mitokondrioiden eli solun voimalaitosten perimän määrässä. Nämä tulokset antavat arvokasta lisätietoa ataksiasairauksien taustalla olevista muutoksista, joiden ymmärtäminen on välttämätön edellytys hoitomahdollisuuksien tutkimiselle tulevaisuudessa.
Resumo:
The independent manufacturer’s furniture showroom, as defined by Herman Miller and Knoll in the mid-twentieth century, presented a highly controlled and controllable context in which both companies and their designers familiarized American architects, designers and consumers with new ideas about living with modern furniture and architecture. Embracing consumerism within a modernist idiom, these mid-century furniture showrooms provided a unique interior typology wherein the reconciliation of modernism, mass-produced goods and personal expression was not only possible, but also accessible. Challenging long-held practices and beliefs within the nation’s conservative home furnishings market, Herman Miller and Knoll superseded retail buyers by reaching out directly to customers. The independently-run showrooms allowed both companies to engage their customers in a sophisticated and sustained proposition about the role of modern furniture and architecture in daily life. Examining the showrooms designed for Herman Miller and Knoll Associates during the latter 1940s and early 1950s, this article explores the ways in which these spaces were utilized as both laboratories and showcases, demonstrating the adaptability of modern furniture and interiors to individual lifestyles. Key words Charles and Ray Eames display design furniture Herman Miller Knoll Associates modernism showrooms
Resumo:
Raffinose oligosaccharides (RO) are the major factors responsible for flatulence following ingestion of soybean-derived products. Removal of RO from seeds or soymilk would then have a positive impact on the acceptance of soy-based foods. In this study, alpha-galactosidase from Aspergillus oryzae was entrapped in gelatin using formaldehyde as the hardener. The immobilization yield was 64.3% under the optimum conditions of immobilization. The immobilized alpha-galactosidase showed a shift in optimum pH from 4.8 to 5.4 in acetate buffer. The optimum temperature also shifted from 50 degrees C to 57 degrees C compared with soluble enzyme. Immobilized alpha-galactosidase was used in batch, repeated batch and continuous mode to degrade RO present in soymilk. In the repeated batch, 45% reduction of RO was obtained in the fourth cycle. The performance of immobilized alpha-galactosidase was tested in a fluidized bed reactor at different flow rates and 86% reduction of RO in soymilk was obtained at 25 ml h(-1) flow rate. The study revealed that immobilized alpha-galactosidase in continuous mode is efficient in reduction of RO present in soymilk.