974 resultados para Biology, Animal Physiology|Chemistry, Biochemistry
Resumo:
Cytochrome P450s, a superfamily of heme enzymes found in most living organisms. They are responsible for metabolism of many therapeutic drugs, industrial pollutants, carcinogens, and additives to foodstuffs, as well as some endogenous compounds including fatty acids and steroids. First pass drug metabolism studies represent mainly liver and small intestine elimination, and are viewed as the standard to predict therapeutic outcome. However, drug plasma levels determined after administration do not always correlate with therapeutic efficacy of the drug. Therefore, a possible explanation may come by understanding drug metabolism in extrahepatic tissues and/or at the site of drug action. Identification and characterization of novel tissue specific isoforms of P450 generated by alternative splicing of known P450 genes or as yet unidentified genes is essential to predict pharmacological outcome of drugs or the fate of a carcinogen that act at sites remote from liver. ^ Using RT-PCR, brain-specific cytochrome P450s were detected in samples of human autopsy brain. So far, we have identified two human brain variants including P450 2D7 and P450 1A1. We have shown the presence of the P450 1A1 brain specific splice variant in African Americans, Caucasians and Indians albeit different patterns of liver to brain variant ratio were seen distributed throughout each population. Interestingly, the splice variant was detected only in the brain but not in any other tissues from the same individual. Homology modeling was used to compare the variant 3D structure to the liver form structure and differences in the substrate access channels and substrate binding sites were noticed. Automated computational docking was used to predict the metabolic fate of the potent carcinogenic substrate, benzo[a]pyrene. P450 1A1 brain variant showed no binding orientations that could produce the active metabolite, whereas P450 1A1 liver form did reveal orientations capable of generating active carcinogenic product. In vitro P32 labeling studies verified the docking predictions. Therefore, the data support the hypothesis that P450 brain splice variants mediate the metabolism of xenobiotics by mechanisms distinct from the well-studied liver counterparts. ^
Resumo:
SRI is unique among known photoreceptors in that it produces opposite signals depending on the color of light stimuli. Absorption of orange light (587 nm) triggers an attractant response by the cell, whereas absorption of orange light followed by near-UV light (373 run) triggers a repellent response. Using behavioral mutants that exhibit aberrant color-sensing ability, we tested a two-conformation equilibrium model, using FRET and EPR spectroscopy. The essence of the model applied to SRI-HtrI is that the complex exists in a metastable two-conformer equilibrium which is shifted in one direction by orange light absorption (producing an attractant signal) and in the opposite direction by a second UV-violet photon (producing a repellent signal). First, by FRET we found that the E-F cytoplasmic loop of SRI moves toward the RAMP domain of the HtrI transducer during the formation of the orange-light activated signaling state of the complex. This is the first localization of a change in the physical relationship between the receptor and transducer subunits of the complex and provides a structural property of the two proposed conformers that we can monitor. Second, EPR spectra of a spin label probe at this cytoplasmic position showed shifts in the dark in the mutants toward shorter or longer EF loop-RAMP distances, explaining their behavior in terms of their mutations causing pre-stimulus shifts into one or the other conformer. ^ Next, we applied a novel electrophysiological method for monitoring the directionality of proton movement during photoactivation of SRI, to investigate the process of proton transfer in the photoactive site from the chromophore to proton acceptors on both the wildtype and aberrant color-response mutants. We observed an unexpected and critical difference in the two signaling conformations of the SRI-HtrI complex. The finding is that the vectoriality (i.e. movement away or toward the cytoplasm) of the light-induced proton transfer from the chromophore to the protein is opposite in formation of the two conformations. Retinylidene proton transfer is a common critical process in rhodopsins and these results are the first to show differences in vectoriality in a rhodopsin receptor, and to demonstrate functional importance of the direction of proton transfer. ^
Resumo:
Ion channels play a crucial role in the functioning of different systems of the body because of their ability to bridge the cell membrane and allow ions to pass in and out of the cell. Ionotropic glutamate receptors are one class of these important proteins and have been shown to be critical in propagating synaptic transmission in the central nervous system and in other diverse functions throughout the body. Because of their wide-ranging effects, this family of receptors is an important target for structure-function investigations to understand their mechanism of action. ^ α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are one subtype of glutamate receptors and have been shown to be the primary receptors involved in rapid excitatory signaling in the central nervous system. Agonist binding to the extracellular ligand binding domain of these receptors causes various conformational changes that culminate in formation of the ion channel. Previous structural investigations have provided important information about their mechanism of action, including uncovering a relationship between the degree of cleft closure in the binding domain and activation of the receptor. However, what question remains unanswered is how specific interactions between the agonist and the protein interplay with cleft closure to mediate receptor activation. ^ To investigate this question, I applied a multiscale approach to investigate the effects of agonist binding on various levels. Vibrational spectroscopy was utilized to investigate molecular-level interactions in the binding pocket, and fluorescence resonance energy transfer (FRET) was employed to measure cleft closure in the isolated ligand binding domain. The results of these studies in the isolated binding domain were then correlated to activation of the full receptor. These investigations showed a relationship between the strength of the interaction at the α-amine group of the agonist and extent of receptor activation, where a stronger interaction correlated to a larger activation, which was upheld even when the extent of cleft closure did not correlate to activation. These results show that this interaction at the α-amine group is critical in mediating the allosteric mechanism of activation and provide a bit more insight into how agonist binding is coupled to channel gating in AMPA receptors. ^
Resumo:
Macromolecular interactions, such as protein-protein interactions and protein-DNA interactions, play important roles in executing biological functions in cells. However the complexity of such interactions often makes it very challenging to elucidate the structural details of these subjects. In this thesis, two different research strategies were applied on two different two macromolecular systems: X-ray crystallography on three tandem FF domains of transcription regulator CA150 and electron microscopy on STAT1-importin α5 complex. The results from these studies provide novel insights into the function-structure relationships of transcription coupled RNA splicing mediated by CA150 and the nuclear import process of the JAK-STAT signaling pathway. ^ The first project aimed at the protein-protein interaction module FF domain, which often occurs as tandem repeats. Crystallographic structure of the first three FF domains of human CA150 was determined to 2.7 Å resolution. This is the only crystal structure of an FF domain and the only structure on tandem FF domains to date. It revealed a striking connectivity between an FF domain and the next. Peptide binding assay with the potential binding ligand of FF domains was performed using fluorescence polarization. Furthermore, for the first time, FF domains were found to potentially interact with DNA. DNA binding assays were also performed and the results were supportive to this newly proposed functionality of an FF domain. ^ The second project aimed at understanding the molecular mechanism of the nuclear import process of transcription factor STAT1. The first structural model of pSTAT1-importin α5 complex in solution was built from the images of negative staining electron microscopy. Two STAT1 molecules were observed to interact with one molecule of importin α5 in an asymmetric manner. This seems to imply that STAT1 interacts with importin α5 with a novel mechanism that is different from canonical importin α-cargo interactions. Further in vitro binding assays were performed to obtain more details on the pSTAT1-importin α5 interaction. ^
Involvement of HMGB1 in the repair of DNA adducts and the responses to DNA damage in mammalian cells
Resumo:
High mobility group protein B1 (HMGB1) is a multifunctional protein with roles in chromatin structure, transcription, V(D)J recombination, and inflammation. HMGB1 also binds to and bends damaged DNA, but the biological consequence of this interaction is not clearly understood. We have shown previously that HMGB1 binds cooperatively with nucleotide excision repair (NER) damage recognition proteins XPA and RPA to triplex-directed psoralen DNA interstrand crosslinks (ICLs). Based on this we hypothesized that HMGB1 is enhancing the repair of DNA lesions, and through this role, is affecting DNA damage-induced mutagenesis and cell survival. Because HMGB1 is also a chromatin protein, we further hypothesized that it is acting to facilitate chromatin remodeling at the site of the DNA damage, to allow access of the repair machinery to the DNA lesion. We demonstrated here that HMGB1 could bind to triplex-directed psoralen ICLs in a complex with NER proteins XPC-RAD23B, XPA and RPA, which occurred in the presence or absence of DNA. Supporting these findings, we demonstrated that HMGB1 enhanced repair of triplex-directed psoralen ICLs (by nucleotide incorporation), as well as removal of UVC irradiation-induced DNA lesions from the genome (by radioimmunoassay). We also explored HMGB1's role in chromatin remodeling upon DNA damage. Immunoblotting demonstrated that, in contrast to HMGB1 proficient cells, cells lacking HMGB1 showed no increase in histone acetylation after UVC irradiation. Additionally, purified HMGB1 protein enhanced chromatin formation in an in vitro chromatin assembly system. However, HMGB1 also has a role in DNA repair in the absence of chromatin, as shown by measuring UVC-induced nucleotide incorporation on a naked substrate. Upon exploration of HMGB1's effect on several cellular outcomes of DNA damage, we found that mammalian cells lacking HMGB1 were hypersensitive to DNA damage induced by psoralen plus UVA irradiation or UVC radiation, showing less survival and increased mutagenesis. These results reveal a new role for HMGB1 in the error-free repair of DNA lesions in a chromosomal context. As strategies targeting HMGB1 are currently in development for treatment of sepsis and rheumatoid arthritis, our findings draw attention to potential adverse side effects of anti-HMGB1 therapy in patients with inflammatory diseases. ^
Resumo:
Pulmonary fibrosis is a devastating and lethal lung disease with no current cure. Research into cellular signaling pathways able to modulate aspects of pulmonary inflammation and fibrosis will aid in the development of effective therapies for its treatment. Our laboratory has generated a transgenic/knockout mouse with systemic elevations in adenosine due to the partial lack of its metabolic enzyme, adenosine deaminase (ADA). These mice spontaneously develop progressive lung inflammation and severe pulmonary fibrosis suggesting that aberrant adenosine signaling is influencing the development and/or progression of the disease in these animals. These mice also show marked increases in the pro-fibrotic mediator, osteopontin (OPN), which are reversed through ADA therapy that serves to lower lung adenosine levels and ameliorate aspects of the disease. OPN is known to be regulated by intracellular signaling pathways that can be accessed through adenosine receptors, particularly the low affinity A2BR receptor, suggesting that adenosine receptor signaling may be responsible for the induction of OPN in our model. In-vitro, adenosine and the broad spectrum adenosine receptor agonist, NECA, were able to induce a 2.5-fold increase in OPN transcripts in primary alveolar macrophages. This induction was blocked through antagonism of the A2BR receptor pharmacologically, and through the deletion of the receptor subtype in these cells genetically, supporting the hypothesis that the A2BR receptor was responsible for the induction of OPN in our model. These findings demonstrate for the first time that adenosine signaling is an important modulator of pulmonary fibrosis in ADA-deficient mice and that this is in part due to signaling through the A2BR receptor which leads to the induction of the pro-fibrotic molecule, otseopontin. ^
Resumo:
NADPH cytochrome P-450 reductase releases FMN and FAD upon dilution into slightly acidic potassium bromide. The flavins are released with positive cooperativity. Dithiothreitol protects the FAD dependent cytochrome c reductase activity against inactivation by free radicals. Behavior in potassium bromide is sensitive to changes in the pH. High performance hydroxylapatite resolved the FAD dependent reductase from holoreductase. For 96% FAD dependent reductase, the overall yield was 12%.^ High FAD dependence was matched by a low FAD content, with FAD/FMN as low as 0.015. There were three molecules of FMN for every four molecules of reductase. The aporeductase had negligible activity towards cytochrome c, ferricyanide, menadione, dichlorophenolindophenol, nitro blue tetrazolium, oxygen and acetyl pyridine adenine dinucleotide phosphate. A four minute incubation in FAD reconstituted one half to all of the specific activity, per milligram protein, of untreated reductase, depending upon the substrate. After a two hour reconstitution, the reductase eluted from hydroxylapatite at the location of holoreductase. It had little flavin dependence, was equimolar in FMN and FAD, and had nearly the specific activity (per mole flavin) of untreated reductase.^ The lack of activity and the ability of FMN to also reconstitute suggest that the redox center of FAD is essential for catalysis, rather than for structure. Dependence upon FAD is consistent with existing hypotheses for the catalytic cycle of the reductase. ^
Resumo:
$\beta$-adrenergic receptor-mediated activation of adenylate cyclase exhibits an agonist-specific separation between the dose/response curve (characterized by the EC$\sb{50}$) and the dose/binding curve (characterized by the K$\sb{\rm d}$). Cyclase activity can be near-maximal when receptor occupancy is quite low (EC$\sb{50}$ $\ll$ K$\sb{\rm d}$). This separation between the binding and response curves can be explained by the assumption that the rate of cyclase activation is proportional to the concentration of agonist-bound receptors, since the receptor is mobile and can activate more than one cyclase (the Collision Coupling Model of Tolkovsky and Levitzki). Here it is established that agonist binding frequency plays an additional role in adenylate cyclase activation in S49 murine lymphoma cells. Using epinephrine (EC$\sb{50}$ = 10 nM, K$\sb{\rm d}$ = 2 $\mu$M), the rate of cyclase activation decreased by 80% when a small (1.5%) receptor occupancy was restricted (by addition of the antagonist propranolol) to a small number (1.5%) of receptors rather than being proportionally distributed among the cell's entire population of receptors. Thus adenylate cyclase activity is not proportional to receptor occupancy in all circumstances. Collisions between receptor and cyclase pairs apparently occur a number of times in rapid sequence (an encounter); the high binding frequency of epinephrine ensures that discontiguous regions of the cell surface experience some period of agonist-bound receptor activity per small unit time minimizing "wasted" collisions between activated cyclase and bound receptor within an encounter. A contribution of agonist binding frequency to activation is thus possible when: (1) the mean lifetime of the agonist-receptor complex is shorter than the mean encounter time, and (2) the absolute efficiency (intrinsic ability to promote cyclase activation per collision) of the agonist-receptor complex is high. These conclusions are supported by experiments using agonists of different efficiencies and binding frequencies. These results are formalized in the Encounter Coupling Model of adenylate cyclase activation, which takes into explicit account the agonist binding frequency, agonist affinity for the $\beta$-adrenergic receptor, agonist efficiency, encounter frequency and the encounter time between receptor and cyclase. ^
Resumo:
The current studies were undertaken to examine the effect of retinoic acid (RA)-induced differentiation of the murine embryonal carcinoma cell line, F-9, on the glycosylation of specific cellular glycoproteins and on the expression of two members of the family of endogenous lactoside-binding lectins. It was found that RA-induced differentiation of these cells into cells with the properties of primitive endoderm results in the increased fucosylation of 3 glycoproteins with molecular weights of 175 (gp175), 250 (gp250), and 400 (pg400) kDa. These three fucose-containing glycoproteins can be considered as new markers of differentiation in this system. The increased fucosylation of these glycoproteins preceded the 3-fold increase in fucosyltransferase (FT) activity that was seen upon RA-induced differentiation of these cells, indicating that an increase in fucosyltransferase activity alone cannot explain the increased fucosylation of these glycoproteins.^ The effect of RA and Ch55, a chalcone carboxylic acid with retinoid-like properties, induced differentiation of a variety of murine embryonal carcinoma cell lines on the activities of both FT and sialyltransferase (ST) was examined. The effect of differentiation on the activities of both glycosyltransferases was modulated and most probably is dependent upon the differentiation pathway that is triggered by the retinoids for each of the embryonal carcinoma cell lines.^ Two glycoproteins, Lysosomal Associated Membrane Glycoproteins 1 and 2 (LAMP-1 and LAMP-2) were examined in more detail during the course of RA-induced differentiation of F-9 cells. Both the levels and glycosylation of both glycoproteins are increased following differentiation of these cells. Differentiation results in the increased binding of $\sp{125}$l-labelled L-phytohemagglutinin to bind to LAMP-1 which indicates increased GlcNAc $\beta$1,6 branching of the oligosaccharide side chains.^ We found that RA-induced differentiation of F-9 cells results in the decreased expression of the 34 kDa lectin 24 h after addition of the retinoid to the medium. Additionally, 48 h of RA-treatment results in the increased expression of the 14.5 kDa lectin. By indirect immunofluorescence we were able to colocalize the 14.5 kDa lectin and laminin which suggests that laminin may be a ligand for the lectin in the F-9 cells. (Abstract shortened with permission of author.) ^
Resumo:
The present study was designed to determine the potential anticarcinogenic activity of naturally occurring coumarins and their mechanism of action. The results indicated that several naturally occurring coumarins including bergamottin, coriandrin, imperatorin, isopimpinellin, and ostruthin, to which humans are routinely exposed in the diet, were effective inhibitors and/or inactivators of CYP1A1-mediated ethoxyresorufin-O-dealkylase (EROD) or CYP2B1-mediated pentoxyresorufin-O-dealkylase (PROD) in mouse liver microsomes. In addition, bergamottin and corandrin were also found to be inhibitors of purified human P450 1A1 in vitro. Further studies with coriandrin revealed that this compound was a mechanism-based inactivator of P450 1A1 and covalently bound to the P450 1A1 apoprotein. In cultured mouse keratinocytes, bergamottin and coriandrin effectively inhibited the B(a) P metabolism and significantly decreased covalent binding of B(a) P and DMBA to keratinocyte DNA and anti-diol-epoxide-DNA adducts derived from both B(a) P and DMBA in keratinocytes. The data from in vivo experiments showed that bergamottin and coriandrin were potent inhibitors of covalent binding of B (a) P to epidermal DNA and the formation of (+) anti BPDE-DNA adduct, whereas imperatorin and isopimpinellin were more potent inhibitors of covalent binding of DMBA to epidermal DNA. The ability of coumarins to inhibit covalent binding of B (a) P to DNA in mouse epidermis was positively correlated with their inhibitory effect P450 1A1 in vitro, while the inhibitory effect of coumarins on covalent binding of DMBA to epidermal DNA was positively correlated with their inhibitory effects on P450 2B1 and negatively to their inhibitory activity toward P450 1A1. The data from tumor experiments indicated that bergamottin, ostruthin, and coriandrin inhibited tumor initiation by B (a) P in a two-stage carcinogenesis protocol. Bergamottin was most effective in this regard and produced a dose dependent inhibition of papilloma formation in these experiments. In addition, imperatorin was an effective inhibitor of skin tumorigenesis induced by DMBA in SENCAR mouse skin using both a two-stage and a complete carcinogenesis protocol. At dose levels higher than those effective against DMBA, imperatorin also inhibited tumor initiation by B (a) P. The results to date demonstrate that several naturally occurring coumarins possess the ability to block tumor initiation and tumorigenesis by PAHs such as B (a) P and DMBA through inhibition of the P450s involved in the metabolic activation of these hydrocarbons. A working model for the involvement of specific P450s in the metabolic activation of these two PAHs was proposed. ^
Resumo:
Contraction of cardiac muscle is regulated through the Ca2+ dependent protein-protein interactions of the troponin complex (Tn). The critical role cardiac troponin C (cTnC) plays as the Ca2+ receptor in this complex makes it an attractive target for positive inotropic compounds. In this study, the ten Met methyl groups in cTnC, [98% 13C ϵ]-Met cTnC, are used as structural markers to monitor conformational changes in cTnC and identify sites of interaction between cTnC and cardiac troponin I (cTnI) responsible for the Ca2+ dependent interactions. In addition the structural consequences that a number of Ca2+-sensitizing compounds have on free cTnC and the cTnC·cTnI complex were characterized. Using heteronuclear NMR experiments and monitoring chemical shift changes in the ten Met methyl 1H-13C correlations in 3Ca2+ cTnC when bound to cTnI revealed an anti-parallel arrangement for the two proteins such that the N-domain of cTnI interacts with the C-domain of cTnC. The large chemical shifts in Mets-81, -120, and -157 identified points of contact between the proteins that include the C-domain hydrophobic surface in cTnC and the A, B, and D helical interface located in the regulatory N-domain of cTnC. TnI association [cTnI(33–80), cTnI(86–211), or cTnI(33–211)] was found also to dramatically reduce flexibility in the D/E central linker of cTnC as monitored by line broadening in the Met 1H- 13C correlations of cTnC induced by a nitroxide spin label, MTSSL, covalently attached to cTnC at Cys 84. TnI association resulted in an extended cTnC that is unlike the compact structure observed for free cTnC. The Met 1H-13C correlations also allowed the binding characteristics of bepridil, TFP, levosimendan, and EMD 57033 to the apo, 2Ca2+, and Ca2+ saturated forms of cTnC to be determined. In addition, the location of drug binding on the 3Ca2+cTnC·cTnI complex was identified for bepridil and TFP. Use of a novel spin-labeled phenothiazine, and detection of isotope filtered NOEs, allowed identification of drug binding sites in the shallow hydrophobic cup in the C-terminal domain, and on two hydrophobic surfaces on N-regulatory domain in free 3Ca2+ cTnC. In contrast, only one N-domain drug binding site exists in 3Ca2+ cTnC·cTnI complex. The methyl groups of Met 45, 60 and 80, which are grouped in a hydrophobic patch near site II in cTnC, showed the greatest change upon titration with bepridil or TFP, suggesting that this is a critical site of drug binding in both free cTnC and when associated with cTnI. The strongest NOEs were seen for Met-60 and -80, which are located on helices C and D, respectively, of Ca2+ binding site II. These results support the conclusion that the small hydrophobic patch which includes Met-45, -60, and -80 constitutes a drug binding site, and that binding drugs to this site will lead to an increase in Ca2+ binding affinity of site II while preserving maximal cTnC activity. Thus, the subregion in cTnC makes a likely target against which to design new and selective Ca2+-sensitizing compounds. ^
Resumo:
Decorin, a dermatan/chondroitin sulfate proteoglycan, is ubiquitously distributed in the extracellular matrix (ECM) of mammals. Decorin belongs to the small leucine rich proteoglycan (SLRP) family, a proteoglycan family characterized by a core protein dominated by Leucine Rich Repeat motifs. The decorin core protein appears to mediate the binding of decorin to ECM molecules, such as collagens and fibronectin. It is believed that the interactions of decorin with these ECM molecules contribute to the regulation of ECM assembly, cell adhesions, and cell proliferation. These basic biological processes play critical roles during embryonic development and wound healing and are altered in pathological conditions such as fibrosis and tumorgenesis. ^ In this dissertation, we discover that decorin core protein can bind to Zn2+ ions with high affinity. Zinc is an essential trace element in mammals. Zn2+ ions play a catalytic role in the activation of many enzymes and a structural role in the stabilization of protein conformation. By examining purified recombinant decorin and its core protein fragments for Zn2+ binding activity using Zn2+-chelating column chromatography and Zn2+-equilibrium dialysis approaches, we have located the Zn2+ binding domain to the N-terminal sequence of the decorin core protein. The decorin N-terminal domain appears to contain two Zn2+ binding sites with similar high binding affinity. The sequence of the decorin N-terminal domain does not resemble any other reported zinc-binding motifs and, therefore, represents a novel Zn 2+ binding motif. By investigating the influence of Zn2+ ions on decorin binding interactions, we found a novel Zn2+ dependent interaction with fibrinogen, the major plasma protein in blood clots. Furthermore, a recombinant peptide (MD4) consisting of a 41 amino acid sequence of mouse decorin N-terminal domain can prolong thrombin induced fibrinogen/fibrin clot formation. This suggests that in the presence of Zn2+ the decorin N-terminal domain has an anticoagulation activity. The changed Zn2+-binding activities of the truncated MD4 peptides and site-directed mutagenesis generated mutant peptides revealed that the functional MD4 peptide might contain both a structural zinc-binding site in the cysteine cluster region and a catalytic zinc site that could be created by the flanking sequences of the cysteine cluster region. A model of a loop-like structure for MD4 peptide is proposed. ^
Resumo:
A major goal of chemotherapy is to selectively kill cancer cells while minimizing toxicity to normal cells. Identifying biological differences between cancer and normal cells is essential in designing new strategies to improve therapeutic selectivity. Superoxide dismutases (SOD) are crucial antioxidant enzymes required for the elimination of superoxide (O2·− ), a free radical produced during normal cellular metabolism. Previous studies in our laboratory demonstrated that 2-methoxyestradiol (2-ME), an estradiol derivative, inhibits the function of SOD and selectively kills human leukemia cells without exhibiting significant cytotoxicity in normal lymphocytes. The present work was initiated to examine the biochemical basis for the selective anticancer activity of 2-ME. Investigations using two-parameter flow cytometric analyses and ROS scavengers established that O2·− is a primary and essential mediator of 2-ME-induced apoptosis in cancer cells. In addition, experiments using SOD overexpression vectors and SOD knockout cells found that SOD is a critical target of 2-ME. Importantly, the administration of 2-ME resulted in the selective accumulation of O 2·− and apoptosis in leukemia and ovarian cancer cells. The preferential activity of 2-ME was found to be due to increased intrinsic oxidative stress in these cancer cells versus their normal counterparts. This intrinsic oxidative stress was associated with the upregulation of the antioxidant enzymes SOD and catalase as a mechanism to cope with the increase in ROS. Furthermore, oxygen consumption experiments revealed that normal lymphocytes decrease their respiration rate in response to 2-ME-induced oxidative stress, while human leukemia cells seem to lack this regulatory mechanism. This leads to an uncontrolled production of O2·−, severe accumulation of ROS, and ultimately ROS-mediated apoptosis in leukemia cells treated with 2-ME. The biochemical differences between cancer and normal cells identified here provide a basis for the development of drug combination strategies using 2-ME with other ROS-generating agents to enhance anticancer activity. The effectiveness of such a combination strategy in killing cancer cells was demonstrated by the use of 2-ME with agents/modalities such as ionizing radiation and doxorubicin. Collectively, the data presented here strongly suggests that 2-ME may have important clinical implications for the selective killing of cancer cells. ^
Resumo:
El tema referido a la profesión académica y a las culturas académicas resulta de particular interés puesto que se considera que los profesores universitarios poseen ciertos rasgos de una cultura académica propia, la cual sería el origen y el soporte que legitima sus pensamientos y por tanto su acción dentro de las Universidades. De la necesidad de desentrañar esta cultura es que surge la idea de estudiar si existe un conjunto de creencias, valores y normas que influirían en cómo piensan y actúan los profesores-ingenieros universitarios. El presente trabajo se propone aportar un acercamiento al estudio de los grupos profesionales de los ingenieros, tratando de conocer más acerca de su identidad, trayectoria y cultura. Se propone una lectura longitudinal en el análisis, reconstruyendo trayectorias y abarcando distintos aspectos de la vida, no solo los laborales, analizando al ingeniero que ocupa un determinado lugar en la estructura social la cual está en constante evolución. La pregunta central que guía esta investigación es de carácter cualitativo y comparativo y se enuncia de la siguiente manera: ¿cómo se configuran la profesión académica y la cultura académica de los ingenieros académicos que se desempeñan en la Carrera de Ingeniería Electrónica de la Facultad de Ciencias Físico Matemáticas y Naturales, Ingeniería en Alimentos e Ingeniería Química pertenecientes ambas a la Facultad de Química, Bioquímica y Farmacia de la Universidad Nacional de San Luis? Para describir y caracterizar la profesión y culturas académicas de los ingenieros en la UNSL, se propuso el trabajo de campo con entrevistas en profundidad a ingenieros que se desempeñan como docentes e investigadores en la Universidad Nacional de San Luis. El estudio es cualitativo.Tras el recorrido de investigación realizado, el argumento central de esta Tesis que surge de la interpretación de los datos empíricos, queda definido de la siguiente manera: La profesión y cultura académica de los ingenieros entrevistados en la UNSL se conforma a partir de la compleja vinculación entre estos tres elementos: trayectoria individual, comunidad disciplinar o grupo disciplinar de referencia y, las características propias de la UNSL como institución. Esta profesión académica se desarrolla en el marco de al menos dos tipos de regulaciones: unas que son externas que provienen de las políticas educativas nacionales (como por ejemplo: las leyes, el sistema de incentivos, la categorización, etc.) y otras que son internas y que operan como exigencias normativas al interior de la disciplina, de la institución y de las propias actividades del cargo. En síntesis, la heterogeneidad de la profesión y cultura académica de los ingenieros entrevistados está definida por: el contexto ?la UNSL- y sus propiedades en tanto contexto de intercambio; las características individuales alrededor de la disciplina y, los intereses y motivos individuales y colectivos. Todo ello da cuenta de las relaciones sociales en la vida académica explicando la heterogeneidad, la diversidad y la dinámica que se genera. La historia de la UNSL, las características de las Facultades, la historia y evolución de las tres carreras -los campos de conocimiento, los distintos recorridos y configuraciones históricas de los mismos- forman parte de ese contexto de intercambio y se reactualizan permanentemente. La particular combinación de las distintas actividades académicas reviste carácter único e intransferible (por ejemplo: la distribución de tareas, los criterios para seleccionar docentes en los concursos, la vinculación entre la industria y la sociedad, etc.). Todo lo expresado a juicio y entender propio da cuenta de un modo especial y particular de entender, vivir y desarrollar la profesión académica de estos ingenieros en la UNSL.