935 resultados para Biochemical and molecularcharacterization
Resumo:
Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly alpha-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.
Resumo:
Erythrocytosis arises from a variety of pathogenic mechanisms. We sequenced a 256-bp region 3' to the erythropoietin (Epo) gene which included a 24- to 50-bp minimal hypoxia-responsive element spanning HIF-1- and HNF-4-binding sites in 12 patients with erythrocytosis and 4 normal subjects. Four polymorphisms were found, none of which affected the HIF-1-binding site, although one polymorphism was present in the HNF-4 consensus region. The data indicate that none of these polymorphisms cause erythrocytosis.
Resumo:
To date, seven FMRFamide-related peptides (FaRPs) have been structurally characterized from C. elegans, of which one is structurally identical to the parasitic nematode peptide AF2 (KHEYLRFamide). The other six FaRPs have so far been identified in free-living forms only. in the present study an additional FaRP was isolated and structurally characterized from an ethanolic extract of C. elegans. The extract was screened using a C-terminally directed FaRP antiserum, and the FMRFamide-immunoreactive peptide purified to homogeneity using HPLC. Approximately 80 pmol of the peptide was subjected to Edman degradation and the unequivocal primary structure of the K-7-amide, KSAYMRFamide (PF3/AF8) was determined following a single gas-phase sequencing run. The molecular mass of the peptide was determined using a MALDI-TOF mass spectrometer and was found to be 919 (MH+), which is in agreement with the theoretical mass of C-terminally amidated PF3. A new flp-gene, designated flp-6, has recently been identified which encodes six copies of KSAYMRFamide (PF3/AF8). (C) 1998 Academic Press.
Resumo:
Numerous FMRF amide-related peptides (FaRPs) have been isolated and sequenced from extracts of free-living and parasitic nematodes. The most abundant FaRP identified in ethanolic/methanolic extracts of the parasitic forms, Ascaris suum and Haemonchus contortus and from the free-living nematode, Panagrellus redivivus, was KHEYLRF amide (AF2). Analysis of the nucleotide sequences of cloned FaRP-precursor genes from C. elegans and, more recently, Caenorhabditis vulgaris identified a series of related FaRPs which did not include AF2. An acid-ethanol extract of Caenorhabditis elegans was screened radioimmunometrically for the presence of FaRPs using a C-terminally directed FaRP antiserum. Approximately 300 pmols of the most abundant immunoreactive peptide was purified to homogeneity and 30 pmols was subjected to Edman degradation analysis and gas-phase sequencing. The unequivocal primary structure of the heptapeptide, Lys-His-Glu-Tyr-Leu-Arg-Phe-NH2 (AF2) was determined following a single gas-phase sequencing run. The molecular mass of the peptide was determined using a time-of-flight mass spectrometer and was found to be 920 (MH(+))(-), which was consistent with the theoretical mass of C-terminally amidated AF2. These results indicate that C. elegans possesses more than one FaRP gene. (C) 1995 Academic Press, Inc.
Resumo:
In nematodes, FMRFamide-related peptides (FaRPs) have been structurally characterised from the parasite, Ascaris suum, and from two free-living species, Panagrellus redivivus and Caenorhabditis elegans. While both FaRPs isolated from P. redivivus (PF1 and PF2) have been identified in C. elegans the two heptapeptides isolated from A. suum (AF1 and AF2) have until recently been considered unique to this parasitic species. We have recently isolated AF2 from P. redivivus and, during this study, an additional novel heptapeptide amide, Lys-Ser-Ala-Tyr-Met-Arg-Phe amide (KSAYMRFamide), was structurally characterised. A synthetic replicate of this peptide induced a rapid concentration-dependent muscle tension increase in an isolated A. suum somatic muscle preparation, with a threshold of approximately 0.1 mu M. These data suggest that the complement of FaRPs in parasitic and free-living nematodes may not be as radically different as preliminary studies would suggest, and that the absence of AF1, AF2 and KSAYMRFamide on the C. elegans FMRFamide-related peptide gene (flp-1) may imply the presence of at least two different FaRP genes in nematodes. (C) 1994 Academic Press, Inc.
Resumo:
The heterogeneous morphological, biochemical and functional characteristics of mast cells from different species and from different tissue sites in the same species have been described for over 30 years. Far from being mere histochemical or pharmacological curiosities these differences have far reaching implications for therapeutic practice. This review concentrates on two important areas affected by mast cell heterogeneity, those of adverse reactions to therapeutic agents and the efficacy of anti-allergy therapy.
Resumo:
WaaL is a membrane enzyme that catalyzes a key step in lipopolysaccharide (LPS) synthesis: the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP) O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). Utilizing an in vitro assay, we demonstrate here that ligation with purified Escherichia coli WaaL occurs without adenosine-5'-triphosphate (ATP) and magnesium ions. Furthermore, E. coli and Pseudomonas aeruginosa WaaL proteins cannot catalyze ATP hydrolysis in vitro. We also show that a lysine substitution of the arginine (Arg)-215 residue renders an active protein, whereas WaaL mutants with alanine replacements in the periplasmic-exposed residues Arg-215, Arg-288 and histidine (His)-338 and also the membrane-embedded aspartic acid-389 are nonfunctional. An in silico approach, combining predicted topological information with the analysis of sequence conservation, confirms the importance of a positive charge at the small periplasmic loop of WaaL, since an Arg corresponding to Arg-215 was found at a similar position in all the WaaL homologs. Also, a universally conserved H[NSQ]X(9)GXX[GTY] motif spanning the C-terminal end of the predicted large periplasmic loop and the membrane boundary of the transmembrane helix was identified. The His residue in this motif corresponds to His-338. A survey of LPS structures in which the linkage between O-antigen and lipid A-core OS was elucidated reveals that it is always in the beta-configuration, whereas the sugars bound to Und-PP are in the alpha-configuration. Together, our biochemical and in silico data argue that WaaL proteins use a common reaction mechanism and share features of metal ion-independent inverting glycosyltransferases.
Resumo:
Nucleotide-binding oligomerization domain protein 1 (NOD1) belongs to a family that includes multiple members with NOD and leucine-rich repeats in vertebrates and plants. NOD1 has been suggested to have a role in innate immune responses, but the mechanism involved remains unknown. Here we report that NOD1 mediates the recognition of peptidoglycan derived primarily from Gram-negative bacteria. Biochemical and functional analyses using highly purified and synthetic compounds indicate that the core structure recognized by NOD1 is a dipeptide, gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP). Murine macrophages deficient in NOD1 did not secrete cytokines in response to synthetic iE-DAP and did not prime the lipopolysaccharide response. Thus, NOD1 mediates selective recognition of bacteria through detection of iE-DAP-containing peptidoglycan.
Resumo:
Helminth pathogens express papain-like cysteine peptidases, termed cathepsins, which have important roles in virulence, including host entry, tissue migration and the suppression of host immune responses. The liver fluke Fasciola hepatica, an emerging human pathogen, expresses the largest cathepsin L cysteine protease family yet described. Recent phylogenetic, biochemical and structural studies indicate that this family contains five separate clades, which exhibit overlapping but distinct substrate specificities created by a process of gene duplication followed by subtle residue divergence within the protease active site. The developmentally regulated expression of these proteases correlates with the passage of the parasite through host tissues and its encounters with different host macromolecules.
Resumo:
Programmed cell death (PCD) is executed by proteases, which cleave diverse proteins thus modulating their biochemical and cellular functions. Proteases of the caspase family and hundreds of caspase substrates constitute a major part of the PCD degradome in animals(1,2). Plants lack close homologues of caspases, but instead possess an ancestral family of cysteine proteases, metacaspases(3,4). Although metacaspases are essential for PCD(5-7), their natural substrates remain unknown(4,8). Here we show that metacaspase mcII-Pa cleaves a phylogenetically conserved protein, TSN (Tudor staphylococcal nuclease), during both developmental and stress-induced PCD. TSN knockdown leads to activation of ectopic cell death during reproduction, impairing plant fertility. Surprisingly, human TSN (also known as p100 or SND1), a multifunctional regulator of gene expression(9-15), is cleaved by caspase-3 during apoptosis. This cleavage impairs the ability of TSN to activate mRNA splicing, inhibits its ribonuclease activity and is important for the execution of apoptosis. Our results establish TSN as the first biological substrate of metacaspase and demonstrate that despite the divergence of plants and animals from a common ancestor about one billion years ago and their use of distinct PCD pathways, both have retained a common mechanism to compromise cell viability through the cleavage of the same substrate, TSN.
Resumo:
The biased agonism of the G protein-coupled receptors (GPCRs), where in addition to a traditional G protein-signalling pathway a GPCR promotes intracellular signals though ß-arrestin, is a novel paradigm in pharmacology. Biochemical and biophysical studies have suggested that a GPCR forms a distinct ensemble of conformations signalling through the G protein and ß-arrestin. Here we report on the dynamics of the ß2 adrenergic receptor bound to the ß-arrestin and G protein biased agonists and the empty receptor to further characterize the receptor conformational changes caused by biased agonists. We use conventional and accelerated molecular dynamics (aMD) simulations to explore the conformational transitions of the GPCR from the active state to the inactive state. We found that aMD simulations enable monitoring the transition within the nanosecond timescale while capturing the known microscopic characteristics of the inactive states, such as the ionic lock, the inward position of F6.44, and water clusters. Distinct conformational states are shown to be stabilized by each biased agonist. In particular, in simulations of the receptor with the ß-arrestin biased agonist, N-cyclopentylbutanepherine we observe a different pattern of motions in helix 7 when compared to simulations with the G protein biased agonist, Salbutamol that involves perturbations of the network of interactions within the NPxxY motif. Understanding the network of interactions induced by biased ligands and the subsequent receptor conformational shifts will lead to development of more efficient drugs. © 2013 American Chemical Society
Resumo:
Arachidonic acid release in cells highly over expressing cytosolic phospholipase A2 has been attributed to mitogen-activated protein kinase phosphorylation of cytosolic phospholipase A2 on serine-505. To investigate the role of cytosolic phospholipase A2 in cellular physiology, we attempted to inhibit cytosolic phospholipase A2 in the intact cell employing an antisense RNA strategy. Swiss 3T3 cells were stably transfected with an antisense cytosolic phospholipase A2 expression vector. A clone of cells with reduced immunodetectable cytosolic phospholipase A2, compared to a vector transfected cell line, was identified by Western blotting and a corresponding decrease in phospholipase A2 activity was confirmed by enzymatic assay in cell free extracts. However, arachidonic acid release from intact cells in response to agonists was not different between antisense and control cell lines. Thus, arachidonic acid release in intact cells with decreased cytosolic phospholipase A2 activity is likely to be modulated by rate limiting factors that are extrinsic to cytosolic phospholipase A2.
Resumo:
Eight Duroc × (Landrace × Large White) male pigs housed at a stocking rate of 0.50 m2/pig were subjected to a higher stocking rate of 0.25 m2/pig (higher density, HD) for two 4-day periods over 26 days. Using biochemical and proteomic techniques serum and plasma samples were examined to identify potential biomarkers for monitoring stress due to HD housing. HD housed pigs showed significant differences (P < 0.001) in total cholesterol and low density lipoprotein-associated cholesterol, as well as in concentrations of the pig-major acute phase protein (Pig-MAP) (P = 0.002). No differences were observed in serum cortisol or other acute phase proteins such as haptoglobin, C-reactive protein or apolipoprotein A–I. HD-individuals also showed an imbalance in redox homeostasis, detected as an increase in the level of oxidized proteins measured as the total plasma carbonyl protein content (P < 0.001) with a compensatory increase in the activity of the antioxidant enzyme glutathione peroxidase (P = 0.012). Comparison of the serum proteome yielded a new potential stress biomarker, identified as actin by mass spectrometry. Cluster analysis of the results indicated that individuals segregated into two groups, with different response patterns, suggesting that the stress response depended on individual susceptibility.
Resumo:
Although, ionizing radiation (IR) has been implicated to cause stress in endoplasmic reticulum (ER), how ER stress signaling and major ER stress sensors modulate cellular response to IR is unclear. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER transmembrane protein which initiates unfolded protein response (UPR) or ER stress signaling when ER homeostasis is disturbed. Here, we report that down-regulation of PERK resulted in increased clonogenic survival, enhanced DNA repair and reduced apoptosis in irradiated cancer cells. Our study demonstrated that PERK has a role in sensitizing cancer cells to IR.