965 resultados para Bayesian estimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach for dynamic state estimation of aggregated generators by introducing a new correction factor for equivalent inter-area power flows. The spread of generators from the center of inertia of each area is summarized by the correction term α on the equivalent power flow between the areas and is applied to the identification and estimation process. A nonlinear time varying Kalman filter is applied to estimate the equivalent angles and velocities of coherent areas by reducing the effect of local modes on the estimated states. The approach is simulated on two test systems and the results show the effect of the correction factor and the performance of the state estimation by estimating the inter-area dynamics of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fatigue and fracture performance of a cracked plate can be substantially improved by providing patches as reinforcements. The effectiveness of the patches is related to the reduction they cause in the stress intensity factor (SIF) of the crack. So, for reliable design, one needs an accurate evaluation of the SIF in terms of the crack, patch and adhesive parameters. In this investigation, a centrally cracked large plate with a pair of symmetric bonded narrow patches, oriented normally to the crack line, is analysed by a continuum approach. The narrow patches are treated as transversely flexible line members. The formulation leads to an integral equation which is solved numerically using point collocation. The convergence is rapid. It is found that substantial reductions in SIF are possible with practicable patch dimensions and locations. The patch is more effective when placed on the crack than ahead of the crack. The present analysis indicates that a little distance inwards of the crack tip, not the crack tip itself, is the ideal location, for the patch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic Bayesian Networks (DBNs) provide a versatile platform for predicting and analysing the behaviour of complex systems. As such, they are well suited to the prediction of complex ecosystem population trajectories under anthropogenic disturbances such as the dredging of marine seagrass ecosystems. However, DBNs assume a homogeneous Markov chain whereas a key characteristics of complex ecosystems is the presence of feedback loops, path dependencies and regime changes whereby the behaviour of the system can vary based on past states. This paper develops a method based on the small world structure of complex systems networks to modularise a non-homogeneous DBN and enable the computation of posterior marginal probabilities given evidence in forwards inference. It also provides an approach for an approximate solution for backwards inference as convergence is not guaranteed for a path dependent system. When applied to the seagrass dredging problem, the incorporation of path dependency can implement conditional absorption and allows release from the zero state in line with environmental and ecological observations. As dredging has a marked global impact on seagrass and other marine ecosystems of high environmental and economic value, using such a complex systems model to develop practical ways to meet the needs of conservation and industry through enhancing resistance and/or recovery is of paramount importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantitative expression has been obtained for the equivalent resistance of an internal short in rechargeable cells under constant voltage charging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a unified approach to repulsion in ionic and van der Waals solids based on a compressible-ion/atom model. Earlier studies have shown that repulsion in ionic crystals can be viewed as arising from the compression energy of ions, described by two parameters per ion. Here we obtain the compression parameters of the rare-gas atoms Ne. Ar. Kr and Xe by interpolation using the known parameters of related equi-electronic ions (e.g. Ar from S2-. Cl-, K- and Ca2-). These parameters fit the experimental zero-temperature interatomic distances and compressibilities of the rare-gas crystals satisfactorily. A hightemperature equation of state based on an Einstein model of thermal motions is used to calculate the thermal expansivities, compressibilities and their temperature derivatives for Ar. Kr and Xe. It is argued that an instability at higher temperatures represents the limit to which the solid can be superheated. beyond which sublimation must occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N6-({Delta}2-Isopentenyl) adenosine antibodies were used for the isolation of free cytokinins and cytokinin-containing tRNAs from parts of Cucumis sativus L. var. Guntur seedlings and for the estimation of cytokinins in them. Immobilized N6-({Delta}2-isopentenyl) adenosine antibodies retained tRNAs containing N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine with equal efficiencies. There were at least five cytokinins in the free form in cucumber seedlings. N6-(4-Hydroxy-3-methylbut-2-enyl) adenosine, N6-({Delta}2-isopentenyl) adenosine, and N6-({Delta}2-isopentenyl) adenine were present at least to the extent of 80, 23, and 9 nanograms, respectively, in the cotyledons and 40, 6, and 3 nanograms, respectively, in the decotyledonated seedlings per gram of tissue. Only two cytokinins were found in the tRNAs of cucumber cotyledons, namely N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine in amounts of 12 and 318 nanograms, respectively, per gram of tissue. Immunoaffinity chromatographic analysis of radiolabeled aminoacyl tRNAs from cucumber cotyledons showed that tRNAPhe and tRNATyr contained cytokinins whereas tRNAAla did not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone H-1(alpha) and C-13' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to alpha-helical/beta-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticipating the number and identity of bidders has significant influence in many theoretical results of the auction itself and bidders’ bidding behaviour. This is because when a bidder knows in advance which specific bidders are likely competitors, this knowledge gives a company a head start when setting the bid price. However, despite these competitive implications, most previous studies have focused almost entirely on forecasting the number of bidders and only a few authors have dealt with the identity dimension qualitatively. Using a case study with immediate real-life applications, this paper develops a method for estimating every potential bidder’s probability of participating in a future auction as a function of the tender economic size removing the bias caused by the contract size opportunities distribution. This way, a bidder or auctioner will be able to estimate the likelihood of a specific group of key, previously identified bidders in a future tender.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early detection surveillance programs aim to find invasions of exotic plant pests and diseases before they are too widespread to eradicate. However, the value of these programs can be difficult to justify when no positive detections are made. To demonstrate the value of pest absence information provided by these programs, we use a hierarchical Bayesian framework to model estimates of incursion extent with and without surveillance. A model for the latent invasion process provides the baseline against which surveillance data are assessed. Ecological knowledge and pest management criteria are introduced into the model using informative priors for invasion parameters. Observation models assimilate information from spatio-temporal presence/absence data to accommodate imperfect detection and generate posterior estimates of pest extent. When applied to an early detection program operating in Queensland, Australia, the framework demonstrates that this typical surveillance regime provides a modest reduction in the estimate that a surveyed district is infested. More importantly, the model suggests that early detection surveillance programs can provide a dramatic reduction in the putative area of incursion and therefore offer a substantial benefit to incursion management. By mapping spatial estimates of the point probability of infestation, the model identifies where future surveillance resources can be most effectively deployed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract of Macbeth, G. M., Broderick, D., Buckworth, R. & Ovenden, J. R. (In press, Feb 2013). Linkage disequilibrium estimation of effective population size with immigrants from divergent populations: a case study on Spanish mackerel (Scomberomorus commerson). G3: Genes, Genomes and Genetics. Estimates of genetic effective population size (Ne) using molecular markers are a potentially useful tool for the management of endangered through to commercial species. But, pitfalls are predicted when the effective size is large, as estimates require large numbers of samples from wild populations for statistical validity. Our simulations showed that linkage disequilibrium estimates of Ne up to 10,000 with finite confidence limits can be achieved with sample sizes around 5000. This was deduced from empirical allele frequencies of seven polymorphic microsatellite loci in a commercially harvested fisheries species, the narrow barred Spanish mackerel (Scomberomorus commerson). As expected, the smallest standard deviation of Ne estimates occurred when low frequency alleles were excluded. Additional simulations indicated that the linkage disequilibrium method was sensitive to small numbers of genotypes from cryptic species or conspecific immigrants. A correspondence analysis algorithm was developed to detect and remove outlier genotypes that could possibly be inadvertently sampled from cryptic species or non-breeding immigrants from genetically separate populations. Simulations demonstrated the value of this approach in Spanish mackerel data. When putative immigrants were removed from the empirical data, 95% of the Ne estimates from jacknife resampling were above 24,000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing need to compare the results obtained with different methods of estimation of tree biomass in order to reduce the uncertainty in the assessment of forest biomass carbon. In this study, tree biomass was investigated in a 30-year-old Scots pine (Pinus sylvestris) (Young-Stand) and a 130-year-old mixed Norway spruce (Picea abies)-Scots pine stand (Mature-Stand) located in southern Finland (61º50' N, 24º22' E). In particular, a comparison of the results of different estimation methods was conducted to assess the reliability and suitability of their applications. For the trees in Mature-Stand, annual stem biomass increment fluctuated following a sigmoid equation, and the fitting curves reached a maximum level (from about 1 kg/yr for understorey spruce to 7 kg/yr for dominant pine) when the trees were 100 years old. Tree biomass was estimated to be about 70 Mg/ha in Young-Stand and about 220 Mg/ha in Mature-Stand. In the region (58.00-62.13 ºN, 14-34 ºE, ≤ 300 m a.s.l.) surrounding the study stands, the tree biomass accumulation in Norway spruce and Scots pine stands followed a sigmoid equation with stand age, with a maximum of 230 Mg/ha at the age of 140 years. In Mature-Stand, lichen biomass on the trees was 1.63 Mg/ha with more than half of the biomass occurring on dead branches, and the standing crop of litter lichen on the ground was about 0.09 Mg/ha. There were substantial differences among the results estimated by different methods in the stands. These results imply that a possible estimation error should be taken into account when calculating tree biomass in a stand with an indirect approach.