940 resultados para Bayesian belief networks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicular Ad-hoc Networks (VANETs) can make roads safer, cleaner, and smarter. It can offer a wide range of services, which can be safety and non-safety related. Many safety-related VANETs applications are real-time and mission critical, which would require strict guarantee of security and reliability. Even non-safety related multimedia applications, which will play an important role in the future, will require security support. Lack of such security and privacy in VANETs is one of the key hindrances to the wide spread implementations of it. An insecure and unreliable VANET can be more dangerous than the system without VANET support. So it is essential to make sure that “life-critical safety” information is secure enough to rely on. Securing the VANETs along with appropriate protection of the privacy drivers or vehicle owners is a very challenging task. In this work we summarize the attacks, corresponding security requirements and challenges in VANETs. We also present the most popular generic security policies which are based on prevention as well detection methods. Many VANETs applications require system-wide security support rather than individual layer from the VANETs’ protocol stack. In this work we will review the existing works in the perspective of holistic approach of security. Finally, we will provide some possible future directions to achieve system-wide security as well as privacy-friendly security in VANETs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generally wireless sensor networks rely of many-to-one communication approach for data gathering. This approach is extremely susceptible to sinkhole attack, where an intruder attracts surrounding nodes with unfaithful routing information, and subsequently presents selective forwarding or change the data that carry through it. A sinkhole attack causes an important threat to sensor networks and it should be considered that the sensor nodes are mostly spread out in open areas and of weak computation and battery power. In order to detect the intruder in a sinkhole attack this paper suggests an algorithm which firstly finds a group of suspected nodes by analyzing the consistency of data. Then, the intruder is recognized efficiently in the group by checking the network flow information. The proposed algorithm's performance has been evaluated by using numerical analysis and simulations. Therefore, accuracy and efficiency of algorithm would be verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are employed in numerous applications in different areas including military, ecology, and health; for example, to control of important information like the personnel position in a building, as a result, WSNs need security. However, several restrictions such as low capability of computation, small memory, limited resources of energy, and the unreliable channels employ communication in using WSNs can cause difficulty in use of security and protection in WSNs. It is very essential to save WSNs from malevolent attacks in unfriendly situations. Such networks require security plan due to various limitations of resources and the prominent characteristics of a wireless sensor network which is a considerable challenge. This article is an extensive review about problems of WSNs security, which examined recently by researchers and a better understanding of future directions for WSN security.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large arrays and networks of carbon nanotubes, both single- and multi-walled, feature many superior properties which offer excellent opportunities for various modern applications ranging from nanoelectronics, supercapacitors, photovoltaic cells, energy storage and conversation devices, to gas- and biosensors, nanomechanical and biomedical devices etc. At present, arrays and networks of carbon nanotubes are mainly fabricated from the pre-fabricated separated nanotubes by solution-based techniques. However, the intrinsic structure of the nanotubes (mainly, the level of the structural defects) which are required for the best performance in the nanotube-based applications, are often damaged during the array/network fabrication by surfactants, chemicals, and sonication involved in the process. As a result, the performance of the functional devices may be significantly degraded. In contrast, directly synthesized nanotube arrays/networks can preclude the adverse effects of the solution-based process and largely preserve the excellent properties of the pristine nanotubes. Owing to its advantages of scale-up production and precise positioning of the grown nanotubes, catalytic and catalyst-free chemical vapor depositions (CVD), as well as plasma-enhanced chemical vapor deposition (PECVD) are the methods most promising for the direct synthesis of the nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Service mismatches involve the adaptation of structural and behavioural interfaces of services, which in practice incurs long lead times through manual, coding e ort. We propose a framework, complementary to conventional service adaptation, to extract comprehensive and seman- tically normalised service interfaces, useful for interoperability in large business networks and the Internet of Services. The framework supports introspection and analysis of large and overloaded operational signa- tures to derive focal artefacts, namely the underlying business objects of services. A more simpli ed and comprehensive service interface layer is created based on these, and rendered into semantically normalised in- terfaces, given an ontology accrued through the framework from service analysis history. This opens up the prospect of supporting capability comparisons across services, and run-time request backtracking and ad- justment, as consumers discover new features of a service's operations through corresponding features of similar services. This paper provides a rst exposition of the service interface synthesis framework, describing patterns having novel requirements for unilateral service adaptation, and algorithms for interface introspection and business object alignment. A prototype implementation and analysis of web services drawn from com- mercial logistic systems are used to validate the algorithms and identify open challenges and future research directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective control of morphology and electrical connectivity of networks of single-walled carbon nanotubes (SWCNTs) by using rough, nanoporous silica supports of Fe catalyst nanoparticles in catalytic chemical vapor deposition is demonstrated experimentally. The very high quality of the nanotubes is evidenced by the G-to-D Raman peak ratios (>50) within the range of the highest known ratios. Transitions from separated nanotubes on smooth SiO2 surface to densely interconnected networks on the nanoporous SiO2 are accompanied by an almost two-order of magnitude increase of the nanotube density. These transitions herald the hardly detectable onset of the nanoscale connectivity and are confirmed by the microanalysis and electrical measurements. The achieved effective nanotube interconnection leads to the dramatic, almost three-orders of magnitude decrease of the SWCNT network resistivity compared to networks of similar density produced by wet chemistry-based assembly of preformed nanotubes. The growth model, supported by multiscale, multiphase modeling of SWCNT nucleation reveals multiple constructive roles of the porous catalyst support in facilitating the catalyst saturation and SWCNT nucleation, consistent with the observed higher density of longer nanotubes. The associated mechanisms are related to the unique surface conditions (roughness, wettability, and reduced catalyst coalescence) on the porous SiO2 and the increased carbon supply through the supporting porous structure. This approach is promising for the direct integration of SWCNT networks into Si-based nanodevice platforms and multiple applications ranging from nanoelectronics and energy conversion to bio- and environmental sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on providing reliable data transmissions in large-scale industrial wireless sensor networks through improving network layer protocols. It addresses three major problems: scalability, dynamic industrial environments and coexistence of multiple types of data traffic in a network. Theoretical developments are conducted, followed by simulation studies for verification of theoretic results. The approach proposed in this thesis has been shown to be effective for large-scale network implementation and to provide improved data transmission reliability for both periodic and sporadic traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatiotemporal dynamics of an alien species invasion across a real landscape are typically complex. While surveillance is an essential part of a management response, planning surveillance in space and time present a difficult challenge due to this complexity. We show here a method for determining the highest probability sites for occupancy across a landscape at an arbitrary point in the future, based on occupancy data from a single slice in time. We apply to the method to the invasion of Giant Hogweed, a serious weed in the Czech republic and throughout Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian experimental design is a fast growing area of research with many real-world applications. As computational power has increased over the years, so has the development of simulation-based design methods, which involve a number of algorithms, such as Markov chain Monte Carlo, sequential Monte Carlo and approximate Bayes methods, facilitating more complex design problems to be solved. The Bayesian framework provides a unified approach for incorporating prior information and/or uncertainties regarding the statistical model with a utility function which describes the experimental aims. In this paper, we provide a general overview on the concepts involved in Bayesian experimental design, and focus on describing some of the more commonly used Bayesian utility functions and methods for their estimation, as well as a number of algorithms that are used to search over the design space to find the Bayesian optimal design. We also discuss other computational strategies for further research in Bayesian optimal design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyses and compares the cost efficiency of Japanese steam power generation companies using the fixed and random Bayesian frontier models. We show that it is essential to account for heterogeneity in modelling the performance of energy companies. Results from the model estimation also indicate that restricting CO2 emissions can lead to a decrease in total cost. The study finally discusses the efficiency variations between the energy companies under analysis, and elaborates on the managerial and policy implications of the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis has contributed to the advancement of knowledge in disease modelling by addressing interesting and crucial issues relevant to modelling health data over space and time. The research has led to the increased understanding of spatial scales, temporal scales, and spatial smoothing for modelling diseases, in terms of their methodology and applications. This research is of particular significance to researchers seeking to employ statistical modelling techniques over space and time in various disciplines. A broad class of statistical models are employed to assess what impact of spatial and temporal scales have on simulated and real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.