967 resultados para Bacterial spores
Resumo:
Organic-inorganic composite membranes were prepared from membranes of the bio-polymer bacterial cellulose (BC) and organic-inorganic sal composed of nanoparticulate boehmite and epoxi modified siloxane. Bacterial cellulose membranes are obtained in a highly hydrated state (1% cellulose and 99% cellulose) from cultures of Gluconacetobacter xylinus and could be used in the never-dried or in the dried state. Depending on the use of dried or never-dried BC membranes two main kinds of composites were obtained. In the first one dried BC membranes coated with the hybrid sol have lead to transparent membranes displaying a hi-phase structure where the two components could be easily distinguished, with individual structures preserved. A decrease was observed for tensile strength (50.5 MPa) and Young's Modulus (2.8 GPa) when compared to pure BC membrane (112.5 MPa and 12.7 GPa). Elongation at break was observed to increase (2.5% against 1.5% observed for BC). When never-dried BC membranes were used transparent membranes were also obtained, however an improvement was observed for mechanical properties (tensile strength - 116 MPa and Young's Modulus - 13.7 GPa). A lower value was obtained for the elongation at break (1.3%). In the last case the interaction between the two-phases lead to changes in the cellulose crystallinity as shown by X rays diffraction results. Multifunctional transparent membranes displaying the cellulose structure in one side and the boehmite-siloxane structure at the opposite face could find special applications in opto-electronics or biomedical areas taking advantage of the different chemical nature of the two components. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
There are many infectious complications related to vascular access in patients undergoing maintenance hemodialysis. We report two cases of endophthalmitis as a metastatic infection associated with a tunneled catheter and a temporary dual lumen catheter. Both patients were diabetic. A 61-year-old female on maintenance hemodialysis by a jugular tunnelized catheter during the past year was receiving parenteral antibiotics for catheter salvage due to fever episodes in the last 3 months. She was admitted to the hospital presenting pain, proptosis, conjunctival hyperemia, corneal infiltrate, and visual acuity of no light perception (NLP). A 51-year-old male recently undergoing hemodialysis by a temporary dual lumen catheter presented fever. His catheter was removed, but he was admitted to the hospital presenting fever, decreased vision, edema, and pain in his left eye. On examination, eyelid edema, conjunctival hyperemia, purulent secretion, hypopyon in the pupils, and visual acuity of NLP were verified. A diagnosis of endogenous endophthalmitis was made in both patients on clinical grounds and computed tomography. Evisceration of the left eye was the first option of treatment for both patients due to poor vision. Cultures of the eviscerated ocular globes showed Staphylococcus hemolyticus and Staphylococcus aureus, respectively. After evisceration, both patients received treatment, had a good outcome, and were discharged to continue their hemodialysis program. Metastatic bacterial endophthalmitis is a rare complication of dialysis catheter-related bacteremia. When suspected, urgent ophthalmologic evaluation and treatment are needed to reduce the risk of losing vision in the affected eye.
Resumo:
As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 mu m) the campaign median and quartiles of FBAP number and mass concentration were 7.3x10(4) m(-3) (4.0-13.2x10(4) m(-3)) and 0.72 mu g m(-3) (0.42-1.19 mu g m(-3)), respectively, accounting for 24% (11-41%) of total particle number and 47% (25-65%) of total particle mass. During the five-week campaign in February-March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 mu m, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 mu m was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 mu m. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.
Resumo:
Bacterial adhesion to inert surfaces is a complex process influenced by environmental conditions. In this work, the influence of growth medium and temperature on the adhesion of Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Micrococcus luteus and Listeria monocytogenes to polystyrene surfaces was studied. Most bacteria demonstrated the highest adhesion when cultured in TSYEA, except S. marcescens, which showed to be positively influenced by the pigment production, favored in poor nutrient media (lactose and peptone agar). P. aeruginosa adhesion to polystyrene increased at low temperatures whatever the medium used. The culture medium influenced the surface properties of the bacteria as assessed by the MATS test.
Resumo:
OBJECTIVE: The establishment of the intestinal microbiota in newborns is a critical period with possible long-term consequences for human health. In this research, the development of the fecal microbiota of a group of exclusively breastfed neonates living in low socio-economic conditions in the city of Sao Paulo, Brazil, during the first month of life, was studied. METHODS: Fecal samples were collected from ten neonates on the second, seventh, and 30th days after birth. One of the neonates underwent antibiotic therapy. Molecular techniques were used for analysis; DNA was extracted from the samples, and 16S rRNA libraries were sequenced and phylogenetically analyzed after construction. A real-time polymerase chain reaction (PCR) was performed on the samples taken from the 30th day to amplify DNA from Bifidobacterium sp. RESULTS: The primary phylogenetic groups identified in the samples were Escherichia and Clostridium. Staphylococcus was identified at a low rate. Bifidobacterium sp. was detected in all of the samples collected on the 30th day. In the child who received antibiotics, a reduction in anaerobes and Escherichia, which was associated with an overgrowth of Klebsiella, was observed throughout the experimental period. CONCLUSION: The observed pattern of Escherichia predominance and reduced Staphylococcus colonization is in contrast with the patterns observed in neonates living in developed countries.
Resumo:
This study evaluated the effects of the organic loading rate (OLR) and pH buffer addition on hydrogen production in two anaerobic fluidized bed reactors (AFBRs) operated simultaneously. The AFBRs were fed with glucose, and expanded clay was used as support material. The reactors were operated at a temperature of 30 degrees C, without the addition of a buffer (AFBR1) and with the addition of a pH buffer (AFBR2, sodium bicarbonate) for OLRs ranging from 19.0 to 140.6 kg COD m(-3) d(-1) (COD: chemical oxygen demand). The maximum hydrogen yields for AFBR1 and AFBR2 were 2.45 and 1.90 mol H-2 mol(-1) glucose (OLR of 84.3 kg COD m(-3) d(-1)), respectively. The highest hydrogen production rates were 0.95 and 0.76 L h(-1) L-1 for AFBR1 and AFBR2 (OLR of 140.6 kg COD m(-3) d(-1)), respectively. The operating conditions in AFBR1 favored the presence of such bacteria as Clostridium, while the bacteria in AFBR2 included Clostridium, Enterobacter, Klebsiella, Veillonellaceae, Chryseobacterium, Sporolactobacillus, and Burkholderiaceae. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Rabies is a viral encephalitis, nearly always fatal, but preventable through vaccines. Rabid animal bite is the prime transmission act, while veterinary vaccination is one of the best strategies for rabies general prevention. Aluminum compounds and saponin are the commercial adjuvants used for this vaccine nowadays. Nevertheless, aluminum compounds can provoke undesired side effects and saponin has a narrow activity range without toxicity. B. atrophaeus inactivated spores (BAIS), with or without saponin, were then used as an alternative to boost the inactivated rabies virus response. BAIS was as effective as saponin in augmenting antibody titers, but combination of both adjuvants doubled the titers raised by them individually. The combined adjuvant formulation maintained viability for 21 months when stored at 4-8 degrees C. Overall, BAIS was demonstrated as a viable alternative to commercial adjuvants, while its combination with saponin resulted in even higher vaccine potency with good stability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo
Resumo:
Baccharis dracunculifolia is a plant native from Brazil, commonly known as 'Alecrim-do-campo' and 'Vassoura' and used in alternative medicine for the treatment of inflammation, hepatic disorders and stomach ulcers. Previous studies reported that artepillin C (ArtC, 3-{4-hydroxy-3,5-di(3-methyl-2-butenyl)phenyl}-2(E)-propenoic acid), is the main compound of interest in the leaves. This study was undertaken to assess the mutagenic effect of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE: 11.4-182.8 mu g/plate) and ArtC (0.69-10.99 mu g/plate) by the Ames test using Salmonella typhimurium strains TA98, TA97a, TA100 and TA102, and to compare the protective effects of Bd-EAE and ArtC against the mutagenicity of a variety of direct and indirect acting mutagens such as 4-nitro-O-phenylenediamine, sodium azide, mitomycin C, benzo[a]pyrene, aflatoxin B1, 2-aminoanthracene and 2-aminofluorene. The mutagenicity test showed that Bd-EAE and ArtC did not induce an increase in the number of revertant colonies indicating absence of mutagenic activity. ArtC showed a similar antimutagenic effect to that of Bd-EAE in some strains of S. typhimurium, demonstrating that the antimutagenic activity of Bd-EAE can be partially attributed to ArtC. The present results showed that the protective effect of whole plant extracts is due to the combined and synergistic effects of a complex mixture of phytochemicals, the total activity of which may result in health benefits.
Resumo:
The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (alpha-A RH D bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirao Experimental Station secondary forest (SF) and agriculture (AG)-, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.
Resumo:
Insects are able to combat infection by initiating an efficient immune response that involves synthesizing antimicrobial peptides and a range of other defense molecules. These responses may be costly to the organism, resulting in it exploiting endogenous resources to maintain homeostasis or support defense to the detriment of other physiological needs. We used queenless worker bees on distinct dietary regimes that may alter hemolymph protein storage and ovary activation to investigate the physiological costs of infection with Serratia marcescens. The expression of the genes encoding the storage proteins vitellogenin and hexamerin 70a, the vitellogenin receptor, and vasa (which has a putative role in reproduction), was impaired in the infected bees. This impairment was mainly evident in the bees fed beebread, which caused significantly higher expression of these genes than did royal jelly or syrup, and this was confirmed at the vitellogenin and hexamerin 70a protein levels. Beebread was also the only diet that promoted ovary activation in the queenless bees, but this activation was significantly impaired by the infection. The expression of the genes encoding the storage proteins apolipophorins-I and -III and the lipophorin receptor was not altered by infection regardless the diet provided to the bees. Similarly, the storage of apolipophorin-I in the hemolymph was only slightly impaired by the infection, independently of the supplied diet. Taken together these results indicate that, infection demands a physiological cost from the transcription of specific protein storage-related genes and from the reproductive capacity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Self-supported organic-inorganic hybrid transparent films have been prepared from bacterial cellulose and boehmite. SEM results indicate that the BC membranes are covered by Boehmite and XRD patterns suggest structural changes on cellulose due to Boehmite addition. Thermal stability is accessed through TG curves and is dependent on Boehmite content. Transparency, as evaluated by UV-Vis absorption, increases with increasing content of boehmite suggesting application of these materials as transparent substrates for opto-electronic devices.
Resumo:
The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.
Resumo:
Abstract Background Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime. Results To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306. Conclusions Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.