969 resultados para BRAIN TUMOR
Resumo:
Intracranial metastatic prostate carcinoma is rare. We sought to determine the clinical outcomes after Gamma Knife® stereotactic radiosurgery (GKSRS) for patients with intracranial prostate carcinoma metastases. We studied data from 10 patients who underwent radiosurgery for 15 intracranial metastases (9 dural-based and 6 parenchymal). Six patients had radiosurgery for solitary tumors and four had multiple tumors. The primary pathology was adenocarcinoma (eight patients) and small cell carcinoma (two patients). All patients received multimodality management for their primary tumor (including resection, radiation therapy, androgen deprivation therapy) and eight patients had evidence of systemic disease at time of radiosurgery. The mean tumor volume was 7.7 cm3 (range 1.1-17.2 cm3) and a median margin dose of 16 Gy was administered. Two patients had progressive intracranial disease in spite of fractionated partial brain radiation therapy (PBRT) prior to SRS. A local tumor control rate of 85% was achieved (including patients receiving boost, upfront and salvage SRS). New remote brain metastases developed in three patients (33%) and one patient had repeat SRS for tumor recurrence. The median survival after radiosurgery was 13 months and the 1-year survival rate was 60%. SRS was a well tolerated and effective therapy either alone or as a boost to fractionated radiation therapy in the management of patients with intracranial prostate carcinoma metastases. © 2009 Springer Science+Business Media, LLC.
Resumo:
Regulatory T (Treg) cells limit the onset of effective antitumor immunity, through yet-ill-defined mechanisms. We showed the rejection of established ovalbumin (OVA)-expressing MCA101 tumors required both the adoptive transfer of OVA-specific CD8(+) T cell receptor transgenic T cells (OTI) and the neutralization of Foxp3(+) T cells. In tumor-draining lymph nodes, Foxp3(+) T cell neutralization induced a marked arrest in the migration of OTI T cells, increased numbers of dendritic cells (DCs), and enhanced OTI T cell priming. Using an in vitro cytotoxic assay and two-photon live microscopy after adoptive transfer of DCs, we demonstrated that Foxp3(+) T cells induced the death of DCs in tumor-draining lymph nodes, but not in the absence of tumor. DC death correlated with Foxp3(+) T cell-DC contacts, and it was tumor-antigen and perforin dependent. We conclude that Foxp3(+) T cell-dependent DC death in tumor-draining lymph nodes limits the onset of CD8(+) T cell responses.
Resumo:
Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor biopsies. We also report that USP17 is tightly regulated during the cell cycle in all the cells examined, being abundantly evident in G1 and absent in S phase. Moreover, regulated USP17 expression was necessary for cell cycle progression because its depletion significantly impaired G1-S transition and blocked cell proliferation. Previously, we have shown that USP17 regulates the intracellular translocation and activation of the GTPase Ras by controlling Ras-converting enzyme 1 (RCE1) activation. RCE1 also regulates the processing of other proteins with a CAAX motif, including Rho family GTPases. We now show that USP17 depletion blocks Ras and RhoA localization and activation. Moreover, our results confirm that USP17-depleted cells have constitutively elevated levels of the cyclin-dependent kinase inhibitors p21cip1 and p27kip1, known downstream targets of Ras and RhoA signaling. These observations clearly show that USP17 is tightly regulated during cell division and that its expression is necessary to coordinate cell cycle progression, and thus, it may be considered a promising novel cancer therapeutic target. Cancer Res; 70(8); 3329–39. ©2010 AACR.
Resumo:
Primary objective: To investigate the attitudes of healthcare professionals towards individuals with traumatic brain injury (TBI) and their relationship to intended healthcare behaviour.
Research design: An independent groups design utilized four independent variables; aetiology, group, blame and gender to explore attitudes towards survivors of brain injury. The dependent variables were measured using the Prejudicial Evaluation and Social Interaction Scale (PESIS) and Helping Behaviour Scale (HBS).
Methods and procedures: A hypothetical vignette based methodology was used. Four hundred and sixty participants (131 trainee nurses, 94 qualified nurses, 174 trainee doctors, 61 qualified doctors) were randomly allocated to one of six possible conditions.
Main outcomes and results: Regardless of aetiology, if an individual is to blame for their injury, qualified healthcare professionals have more prejudicial attitudes than those entering the profession. There is a significant negative relationship between prejudice and helping behaviour for qualified healthcare professionals.
Conclusions: Increased prejudicial attitudes of qualified staff are related to a decrease in intended helping behaviour, which has the potential to impact negatively on an individual's recovery post-injury.
Resumo:
PRIMARY OBJECTIVE: To determine the views held by the general public in Northern Ireland towards survivors of brain injury. RESEARCH DESIGN: Qualitative semi-structured interviews. METHODS AND PROCEDURES: Interviews were conducted with 16 members of the general public. Ten questions addressed issues such as the role of survivors of brain injury in society, the challenges they face and the characteristics ascribed to them. MAIN OUTCOMES AND RESULTS: When asked to describe someone with a brain injury participants typically used negative labels and identified the most common problems as relating to physical, cognitive, emotional and social functioning. There was a general failure to recognize that brain injury was a 'hidden' disability, with most participants expecting some outward manifestation. Relatively few previous studies have employed a qualitative approach to explore how the public perceives survivors of brain injury. CONCLUSION: Members of the public have an increasing awareness of the challenges faced by survivors of brain injury. However, in spite of this, perceptions of aggressiveness, dependency and unhappiness were still evident, suggesting potential problems in reintegrating survivors of brain injury with their communities.
Resumo:
Background & aims: Little is known about energy requirements in brain injured (TBI) patients, despite evidence suggesting adequate nutritional support can improve clinical outcomes. The study aim was to compare predicted energy requirements with measured resting energy expenditure (REE) values, in patients recovering from TBI.
Methods: Indirect calorimetry (IC) was used to measure REE in 45 patients with TBI. Predicted energy requirements were determined using FAO/WHO/UNU and Harris–Benedict (HB) equations. Bland– Altman and regression analysis were used for analysis.
Results: One-hundred and sixty-seven successful measurements were recorded in patients with TBI. At an individual level, both equations predicted REE poorly. The mean of the differences of standardised areas of measured REE and FAO/WHO/UNU was near zero (9 kcal) but the variation in both directions was substantial (range 591 to þ573 kcal). Similarly, the differences of areas of measured REE and HB demonstrated a mean of 1.9 kcal and range 568 to þ571 kcal. Glasgow coma score, patient status, weight and body temperature were signi?cant predictors of measured REE (p < 0.001; R2= 0.47).
Conclusions: Clinical equations are poor predictors of measured REE in patients with TBI. The variability in REE is substantial. Clinicians should be aware of the limitations of prediction equations when estimating energy requirements in TBI patients.
Resumo:
The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24), The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this. (C) 2000 by Radiation Research Society.