979 resultados para BOSE-EINSTEIN
Resumo:
We investigate an alternative compactification of extra dimensions using local cosmic string in the Brans-Dicke gravity framework. In the context of dynamical systems it is possible to show that there exist a stable field configuration for the Einstein-Brans-Dicke equations. We explore the analogies between this particular model and the Randall-Sundrum scenario.
Resumo:
A measurement of the top quark mass using events with one charged lepton, missing transverse energy, and jets in the final state, collected by the D0 detector from p (p) over bar collisions at root s=1.96 TeV at the Fermilab Tevatron collider, is presented. A constrained fit is used to fully reconstruct the kinematics of the events. For every event a top quark mass likelihood is calculated taking into account all possible jet assignments and the probability that an event is signal or background. Lifetime-based identification of b jets is employed to enhance the separation between t (t) over bar signal and background from other physics processes and to improve the assignment of the observed jets to the quarks in the t (1) over bar hypothesis. We extract a multiplicative jet energy scale (JES) factor in situ, greatly reducing the systematic effect related to the jet energy measurement. In a data sample with an integrated luminosity of 425 pb(-1), we observe 230 candidate events, with an estimated background of 123 events, and measure m(t)=173.7 +/- 4.4(stat+JES)(-2.0)(+2.1)(syst) GeV. This result represents the first application of the ideogram technique to the measurement of the top quark mass in lepton+jets events.
Resumo:
We present a search for electroweak production of single top quarks in the s-channel (p (p) over bar -> t (b) over bar +X) and t-channel (p (p) over bar -> tq (b) over bar +X) modes. We have analyzed 230 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider at a center-of-mass energy of root s=1.96 TeV. No evidence for a single top quark signal is found. We set 95% confidence level upper limits on the production cross sections, based on binned likelihoods formed from a neural network output. The observed (expected) limits are 6.4 pb (4.5 pb) in the s-channel and 5.0 pb (5.8 pb) in the t-channel.
Resumo:
We report the first direct observation of the strange b baryon Xi(-)(b)(Xi) over bar (+)(b)). We reconstruct the decay Xi(-)(b)-->J/psi Xi(-), with J/psi-->mu(+)mu(-), and Xi(-)-->Lambda pi(-)-->p pi(-)pi(-) in p (p) over bar collisions at root s = 1.96 TeV. Using 1.3 fb(-1) of data collected by the D0 detector, we observe 15.2 +/- 4.4(stat)(-0.4)(+1.9)(syst) Xi(-)(b) candidates at a mass of 5.774 +/- 0.011(stat) +/- 0.015(syst) GeV. The significance of the observed signal is 5.5 sigma, equivalent to a probability of 3.3 x 10(-8) of it arising from a background fluctuation. Normalizing to the decay Lambda(b)-->J/psi Lambda, we measure the relative rate sigma(Xi(-)(b))xB(Xi(-)(b)-->J/psi Xi)/ sigma(Lambda(b))xB(Lambda(b)-->J/psi Lambda) = 0.28 +/- 0.09(stat)(-0.08)(+0.09)(syst).
Resumo:
A measurement of the top quark pair production cross section in proton antiproton collisions at an interaction energy of root s=1.96 TeV is presented. This analysis uses 405 +/- 25 pb(-1) of data collected with the D0 detector at the Fermilab Tevatron Collider. Fully hadronic t (t) over bar decays with final states of six or more jets are separated from the multijet background using secondary vertex tagging and a neural network. The t (t) over bar cross section is measured as sigma(t (t) over bar)=4.5(-1.9)(+2.0)(stat)(-1.1)(+1.4)(syst)+/- 0.3(lumi) pb for a top quark mass of m(t)=175 GeV/c(2).
Resumo:
We report a measurement of the Lambda(0)(b) lifetime using a sample corresponding to 1.3 fb(-1) of data collected by the D0 experiment in 2002-2006 during run II of the Fermilab Tevatron collider. The Lambda(0)(b) baryon is reconstructed via the decay Lambda(0)(b)->mu(nu) over bar Lambda X-+(c). Using 4437 +/- 329 signal candidates, we measure the Lambda(0)(b) lifetime to be tau(Lambda(0)(b))=1.290(-0.110)(+0.119)(stat)(-0.091)(+0.087)(syst) ps, which is among the most precise measurements in semileptonic Lambda(0)(b) decays. This result is in good agreement with the world average value.
Resumo:
We present a measurement of the top quark mass in the dilepton channel based on approximately 370 pb(-1) of data collected by the DO experiment during Run R of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the DO Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m(t) = 178.1 +/- 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report on a search for charge-1/3 third-generation leptoquarks (LQ) produced in p (p) over bar collisions at root s =1.96 TeV using the D0 detector at Fermilab. Third-generation leptoquarks are assumed to be produced in pairs and to decay to a tau neutrino and a b quark with branching fraction B. We place upper limits on sigma(p (p) over bar -> LQ (LQ) over bar )B-2 as a function of the leptoquark mass M-LQ. Assuming B=1, we exclude at the 95% confidence level third-generation scalar leptoquarks with M-LQ < 229 GeV.
Resumo:
We have measured the Lambda(b) lifetime using the exclusive decay Lambda(b)-> J/psi Lambda, based on 1.2 fb(-1) of data collected with the D0 detector during 2002-2006. From 171 reconstructed Lambda(b) decays, where the J/psi and Lambda are identified via the decays J/psi ->mu(+)mu(-) and Lambda -> p pi, we measured the Lambda(b) lifetime to be tau(Lambda(b))=1.218(-0.115)(+0.130)(stat)+/- 0.042(syst) ps. We also measured the B-0 lifetime in the decay B-0 -> J/psi(mu(+)mu(-))K-S(0)(pi(+)pi(-)) to be tau(B-0)=1.501(-0.074)(+0.078)(stat)+/- 0.050(syst) ps, yielding a lifetime ratio of tau(Lambda(b))/tau(B-0)=0.811(-0.087)(+0.096)(stat)+/- 0.034(syst).
Resumo:
We describe a search for the Standard Model Higgs boson with a mass of 105 GeV/c(2) to 145 GeV/c(2) in data corresponding to an integrated luminosity of approximately 450 pb(-1) collected with the D phi detector at the Fermilab Tevatron p (p) over bar collider at a center-of-mass energy of 1.96 TeV. The Higgs boson is required to be produced in association with a Z boson, and the Z boson is required to decay to either electrons or muons with the Higgs boson decaying to a b (b) over bar pair. The data are well described by the expected background, leading to 95% confidence level cross section upper limits sigma (p (p) over bar -> ZH) x B(H -> b (b) over bar) in the range of 3.1 pb to 4.4 pb. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Many-body systems of composite hadrons are characterized by processes that involve the simultaneous presence of hadrons and their constituents. We briefly review several methods that have been devised to study such systems and present a novel method that is based on the ideas of mapping between physical and ideal Fock spaces. The method, known as the Fock-Tani representation, was invented years ago in the context of atomic physics problems and was recently extended to hadronic physics. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, Hermitian Hamiltonians with a clear physical interpretation are obtained. The use of the method in connection with the linked-cluster formalism to describe short-range correlations and quark deconfinement effects in nuclear matter is discussed. As an application of the method, an effective nucleon-nucleon interaction is derived from a constituent quark model and used to obtain the equation of state of nuclear matter in the Hartree-Fock approximation.
Resumo:
We study massless Duffin-Kemmer-Petiau (DKP) fields in the context of Einstein-Cartan gravitation theory, interacting via minimal coupling procedure. In the case of an identically vanishing torsion (Riemannian spacetimes) we show that there exist local gauge symmetries which reproduce the usual gauge symmetries for the massless scalar and electromagnetic fields. on the other hand, similarly to what happens with the Maxwell theory, a nonvanishing torsion, in general, breaks the usual U(1) local gauge symmetry of the electromagnetic field or, from a different point of view, imposes conditions on the torsion.
Resumo:
Massive gravity models in (2 + 1) dimensions, such as those obtained by adding to Einstein's gravity the usual Fierz-Pauli, or the more complicated Ricci scalar squared (R-2), terms, are tree level unitary. Interesting enough these seemingly harmless systems have their unitarity spoiled when they are augmented by a Chern-Simons term. Furthermore, if the massive topological term is added to R + R-munu(2) gravity, or to R + R-munu(2), + R-2 gravity (higher-derivative gravity), which are nonunitary at the tree level, the resulting models remain nonunitary. Therefore, unlike the common belief, as well as the claims in the literature, the coexistence between three-dimensional massive gravity models and massive topological terms is conflicting.
Resumo:
For m(2) < a(2) + q(2), with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr-Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Making use of Wheeler's idea of charge without charge, the topological structure of the extended KN spatial section is found to be highly non-trivial, leading thus to the existence of gravitational states with half-integral angular momentum. This property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4π rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.
Resumo:
Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in p (p) over bar collisions at a center-of-mass energy root s=1.96 TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb(-1). Azimuthal correlations are stronger at larger transverse momenta. These are well described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where contributions with low transverse momentum are significant.