991 resultados para BIOCHEMISTRY
Resumo:
Headspace analysis and solvent extraction of the pollenbearing flower spike of Spathiphyllum cannaefolium have been conducted by GC-MS, to determine the basis of the flower spike’s attractancy to certain fruit-fly species. The major components were benzyl acetate, methyleugenol, methylchavicol, p-methoxybenzyl acetate and fatty acids. Benzyl acetate is known to be attractive to D. cueurbitae, D. dorsalis and C. capitata (representing the three different ‘male-lure categories’) and methyleugenol (one of these male-lures) attracts D. cacuminatus, D. dorsalis and D. occipitalis. Thus the odoriferous flowerspike exhibits wide ranging attractancy and hence Spathiphyllum cannaefolium may have some application as a fruit-fly control measure for small orchards where ‘methyleugenol-attracted’ species (e.g. D. cacuminatus, D. dorsalis, D. occipitalis) are the dominant pests.
Resumo:
We determined the quantity and chemical composition of cuticular hydrocarbons of different strains, sex and age of buffalo flies, Haematobia exigua. The quantity of cuticular hydrocarbons increased from less than 1 µg/fly for newly-emerged flies to over 11 µg/fly in 13 d-old flies. The hydrocarbon chain length varied from C21 to C29, with unbranched alkanes and monounsaturated alkenes the major components. Newly emerged flies produced almost exclusively C27 hydrocarbons. Increasing age was accompanied by the appearance of hydrocarbons with shorter carbon chains and an increase in the proportion of alkenes. 11 Tricosene and 7-tricosene were the most abundant hydrocarbons in mature buffalo flies. Cuticular hydrocarbons of buffalo flies are distinctly different from those of horn flies. The most noticeable differences were in the C23 alkenes, with the major isomers 11- and 7-tricosene in buffalo flies and (Z)-9- and (Z)-5-tricosene in horn flies, respectively. Cuticular hydrocarbon analysis provides a reliable method to differentiate buffalo and horn fly, which are difficult to separate morphologically. The differences in cuticular hydrocarbons also support their recognition as separate species, H. exigua and H. irritans, rather than as subspecies.
Resumo:
The Rhabdoviridae, whose members collectively infect invertebrates, animals, and plants, form a large family that has important consequences for human health, agriculture, and wildlife ecology. Plant rhabdoviruses can be separated into the genera Cytorhabdovirus and Nucleorhabdovirus, based on their sites of replication and morphogenesis. This review presents a general overviewof classical and contemporary findings about rhabdovirus ecology, pathology, vector relations, and taxonomy. The genome organization and structure of several recently sequenced nucleorhabdoviruses and cytorhabdoviruses is integrated with new cell biology findings to provide a model for the replication of the two genera. A prospectus outlines the exciting opportunities for future research that will contribute to a more detailed understanding of the biology, biochemistry, replication and host interactions of the plant rhabdoviruses.
Resumo:
The incorporation of sucrose into the thermophilic fungus,Thermomyces lanuginosus, occurred only in mycelia previously exposed to sucrose or raffinose. Sucrose uptake and invertase were inducible. Both activities appeared in sucrose-induced mycelia at about the same time. Both activities declined almost simultaneously following the exhaustion of sucrose in the medium. The sucrose-induced uptake system was specific for \beta -fructofuranosides as revealed by competition with various sugars. The induction of sucrose uptake system was blocked by cycloheximide, showing that it was dependent on new protein synthesis. Transport of sucrose did not seem to be dependent on ATP. Rather, uptake of this sugar seemed to be driven by a proton gradient across the plasma membrane. The uptake system showed Michaelis-Menten kinetics.
Resumo:
Gossypol, a polyphenolic compound isolated from cotton plant was found to degrade pBR322 DNA Image in a reaction which required the presence of a metal ion, a reducing agent (2-mercaptoethanol) and oxygen as revealed after agarose gel electrophoresis. Fe3+ and Co2+ showed maximum degradation whereas addition of Ca2+ and Mg2+ prevented the gossypol mediated DNA damage. Gossypol caused degradation of rat liver DNA incubated Image even in the absence of added metal ions and 2-mercaptoethanol. Incubation of intact rat liver nuclei with gossypol reveled DNA degradation and nuclei isolated from rats treated with gossypol Image showed higher succestibility to DNA fragmentation when incubated with gossypol Image than control nuclei. EcoRl and AIuI digestion of DNA isolated from gossypol treated rats gave clear cut evidence for DNA degradation. These observations indicate that gossypol is genotoxic and considereable care has to be exercised in its use. SDS, sodium dodecayl sulphate; TE buffer, Tris-HCL-EDTA buffer.
Resumo:
Treatment of rats with Adriamycin caused an increase in the incorporation into hepatic cholesterol of [1-14C] acetate, but not of [2-14C] mevalonate. The step affected was found to be 3-hydroxy-3-methylglutaryl CoA reductase whose activity in the liver microsomes increased in Adriamycin-treated animals, but was inhibited when the drug was added in the assay medium. Also, the concentration of ubiquinone in the liver and of cholesterol in the plasma increased.
Resumo:
Protein fractions that bind retinol were isolated from the cytosol, nucleosol and chromatin of the oviduct magnum of laying hens. The proteins isolated from the three sources showed similar elution profiles on chromatography through Sephadex G-75 and G-50 columns, and comparable mobility during electrophoresis on sodium dodecyl sulphate/polyacrylamide gels. Their molecular weights were calculated to be around 14500. When oviducts from vitamin A-depleted and vitamin A-repleted immature chicks given oestrogen injections for 6 consecutive days were incubated with [3H]retinyl acetate, uptake of the radioactivity in the nuclei of the vitamin A-depleted tissue was severalfold higher than that in the nuclei from the vitamin A-repleted tissue.
Resumo:
The size of the soil microbial biomass carbon (SMBC) has been proposed as a sensitive indicator for measuring the adverse effects of contaminants on the soil microbial community. In this study of Australian agricultural systems, we demonstrated that field variability of SMBC measured using the fumigation-extraction procedure limited its use as a robust ecotoxicological endpoint. The SMBC varied up to 4-fold across control samples collected from a single field site, due to small-scale spatial heterogeneity in the soil physicochemical environment. Power analysis revealed that large numbers of replicates (3-93) were required to identify 20% or 50% decreases in the size of the SMBC of contaminated soil samples relative to their uncontaminated control samples at the 0.05% level of statistical significance. We question the value of the routine measurement of SMBC as an ecotoxicological endpoint at the field scale, and suggest more robust and predictive microbiological indicators.
Resumo:
Cuticular hydrocarbon components in beetles of six Australian melolonthines whose larvae damage sugarcane, Antitrogus parvulus (Britton), A. consanguineus (Blackburn), Lepidiota negatoria (Blackburn), L. picticollis (Lea), L. noxia (Britton) and Dermolepida alborhirtum (Arrow), are identified and compared. These species demonstrate species-specific cuticular hydrocarbon profiles with a number of unprecedented structures. Major components have been identified as polymethylated hydrocarbons, 3-methyl substituted n-alkanes, 9,10-allenes and the corresponding C9 alkenes. The similarity of these compounds shows some correlation with the phylogeny of the beetles, but two polymethylated C22 hydrocarbons are unique to A. parvulus. One C25 allene is shown to have a potential role in mate recognition in A. consanguineus.
Resumo:
The G-protein-coupled receptor 54 (muGPR54) cDNA was cloned from the brain of the grey mullet, and its expression level, as well as those of the gonadotropin-releasing hormones (GnRH1, GnRH2, GnRH3) and dopamine receptor D2 (drd2), in the brain, pituitary and ovary of pubertal fish (early, intermediate, advanced) were determined by real-time quantitative RT-PCR (QPCR). The muGPR54 cDNA has an open reading frame of 1140 bp with a predicted 380 amino acid peptide, containing seven putative transmembrane domains and putative N-glycosylation and protein kinase C phosphorylation sites. QPCR results showed that the early stage of puberty in grey mullet is characterized by significantly high levels of expression of GPR54, GnRH and drd2 in the brain relative to the intermediate and advanced stages, except for GnRH1 that increased at the advanced stage of puberty. In the pituitary, drd2 expression declined significantly at the advanced stage relative to levels at the intermediate stage. Ovarian expression of GPR54 significantly increased from the intermediate stage of puberty relative to the early stage while that of GnRH1 acutely increased at the advanced stage of puberty. The ovarian expression of drd2 decreased as puberty progressed, but the changes were not significant. The results suggest the possible role of GPR54 and GnRH in positively regulating pubertal development in grey mullet and the dopaminergic inhibition of reproductive function mediated by drd2.
Resumo:
Farnesoic acid O-methyltransferase (FaMeT) is the enzyme responsible for the conversion of farnesoic acid (FA) to methyl farnesoate (MF) in the final step of MF synthesis. Multiple isoforms of putative FaMeT were isolated from six crustacean species belonging to the families Portunidae, Penaeidae, Scyllaridae and Parastacidae. The portunid crabs Portunus pelagicus and Scylla serrata code for three forms: short, intermediate and long. Two isoforms (short and long) were isolated from the penaeid prawns Penaeus monodon and Fenneropenaeus merguiensis. Two isoforms were also identified in the scyllarid Thenus orientalis and parastacid Cherax quadricarinatus. Putative FaMeT sequences were also amplified from the genomic DNA of P. pelagicus and compared to the putative FaMeT transcripts expressed. Each putative FaMeT cDNA isoform was represented in the genomic DNA, indicative of a multi-gene family. Various tissues from P. pelagicus were individually screened for putative FaMeT expression using PCR and fragment analysis. Each tissue type expressed all three isoforms of putative FaMeT irrespective of sex or moult stage. Protein domain analysis revealed the presence of a deduced casein kinase II phosphorylation site present only in the long isoform of putative FaMeT.
Resumo:
2,4-Dinitrophenol and paranitrophenol are two major soil pollutants which are known to be metabolized by different soil microbes. Relative phytotoxicities of these parent compounds and their metabolic transformation products to the growth of cucumber seedlings were assessed. It was evident that such microbial transformations widely occurring in the soil are effective detoxification reactions and are beneficial for the plants.
Resumo:
Alamethicin and several related microbial polypeptides, which contain a high proportion of agr-aminoisobutyric acid (Aib) residues, possess the ability to modify the permeability properties of phospholipid bilayer membranes. Alamethicin induces excitability phenomena in model membranes and has served as an excellent model for the study of voltage sensitive transmembrane channels. This review summarizes various aspects of the structural chemistry and membrane modifying properties of alamethicin and related Alb containing peptides. The presence of Aib residues in these sequences, constrains the polypeptides to 310 or agr-helical conformations. Functional membrane channels are formed by aggregation of cylindrical peptide helices, which span the lipid bilayer, forming a scaffolding for an aqueous column across the membrane. After consideration of the available data on the conductance characteristics of alamethicin channels, a working, hypothesis for a channel model is outlined. Channel aggregates in the lipid phase may be stabilized by intermolecular hydrogen bonding, involving a central glutamine residue and also by interactions between the macro-dipoles of proximate peptide helices. Fluctuations between different conductance states are rationalized by transitions between states of different aggregation and hence altered dimensions of the aqueous core or by changes in net dipole moment of the aggregate. Ion fluxes through the channel may also be affected by the electric field within the aqueous core.
Resumo:
Background: Crustaceans represent an attractive model to study biomineralization and cuticle matrix formation, as these events are precisely timed to occur at certain stages of the moult cycle. Moulting, the process by which crustaceans shed their exoskeleton, involves the partial breakdown of the old exoskeleton and the synthesis of a new cuticle. This cuticle is subdivided into layers, some of which become calcified while others remain uncalcified. The cuticle matrix consists of many different proteins that confer the physical properties, such as pliability, of the exoskeleton. Results: We have used a custom cDNA microarray chip, developed for the blue swimmer crab Portunus pelagicus, to generate expression profiles of genes involved in exoskeletal formation across the moult cycle. A total of 21 distinct moult-cycle related differentially expressed transcripts representing crustacean cuticular proteins were isolated. Of these, 13 contained copies of the cuticle_1 domain previously isolated from calcified regions of the crustacean exoskeleton, four transcripts contained a chitin_bind_4 domain (RR consensus sequence) associated with both the calcified and un-calcified cuticle of crustaceans, and four transcripts contained an unannotated domain (PfamB_109992) previously isolated from C. pagurus. Additionally, cryptocyanin, a hemolymph protein involved in cuticle synthesis and structural integrity, also displays differential expression related to the moult cycle. Moult stage-specific expression analysis of these transcripts revealed that differential gene expression occurs both among transcripts containing the same domain and among transcripts containing different domains. Conclusion: The large variety of genes associated with cuticle formation, and their differential expression across the crustacean moult cycle, point to the complexity of the processes associated with cuticle formation and hardening. This study provides a molecular entry path into the investigation of the gene networks associated with cuticle formation.
Resumo:
his paper describes an improved microtiter solid-phase enzyme immunoassay for the determination of total and allergen-specific human IgE. This assay technique is unique in its use of the avidin-biotin interaction to increase sensitivity. The avidin-biotin microtiter enzyme-linked immunosorbant assay (AB-microELISA) was performed in polyvinyl chloride microtiter plates using biotinylated anti-IgE and horseradish peroxidase (HRP)-avidin conjugate. This AB-microELISA technique enabled the quantitation of human serum IgE in the range of 0.1–5 ng/ml (10–500 pg/test) in less than 3 h. Total serum IgE, whether measured by the AB-microELISA or the paper radioimmunosorbant test (PRIST) was similar (correlation coefficient, r = 0.92). Further, the presence or absence of positive skin tests to 7 specific allergens determined in serum donors generally agreed with the presence or absence of allergen-specific IgE in their sera as measured by the AB-microELISA. The quantity of short ragweed allergen-specific IgE as determined by the AB-microELISA agreed with values obtained by the radioimmunosorbant test (RAST) (correlation coefficient, r = 0.89). No significant interference by ragweed-specific IgG (blocking antibody) was observed in the quantitation of allergen-specific IgE. The AB-microELISA is not only rapid and inexpensive, but also more sensitive than other published ELISA procedures and comparable to solid-phase radioimmunoassays in the quantitation of total and allergen-specific IgE.