967 resultados para BI-1
Resumo:
One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.
Resumo:
The SNTA1-encoded α1-syntrophin (SNTA1) missense mutation, p.A257G, causes long QT syndrome (LQTS) by pathogenic accentuation of Nav1.5's sodium current (I Na). Subsequently, we found p.A257G in combination with the SNTA1 polymorphism, p.P74L in 4 victims of sudden infant death syndrome (SIDS) as well as in 3 adult controls. We hypothesized that p.P74L-SNTA1 could functionally modify the pathogenic phenotype of p.A257G-SNTA1, thus explaining its occurrence in non-LQTS populations. The SNTA1 variants p.P74L, p.A257G, and the combination variant p.P74L/p.A257G were engineered using PCR-based overlap-extension and were co-expressed heterologously with SCN5A in HEK293 cells. I Na was recorded using the whole-cell method. Compared to wild-type (WT), the significant increase in peak I Na and window current found with p.A257G was reversed by the intragenic variant p.P74L (p.P74L/p.A257G). These results report for the first time the intragenic rescue of an LQT-associated SNTA1 mutation when found in combination with the SNTA1 polymorphism p.P74L, suggesting an ever-increasing picture of complexity in terms of genetic risk stratification for arrhythmia.
Resumo:
BACKGROUND Approximately 10% of sudden infant death syndrome (SIDS) may stem from cardiac channelopathies. The KCNJ8-encoded Kir6.1 (K(ATP)) channel critically regulates vascular tone and cardiac adaptive response to systemic metabolic stressors, including sepsis. KCNJ8-deficient mice are prone to premature sudden death, particularly with infection. We determined the spectrum, prevalence, and function of KCNJ8 mutations in a large SIDS cohort. METHODS AND RESULTS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, comprehensive open reading frame/splice-site mutational analysis of KCNJ8 was performed on genomic DNA isolated from necropsy tissue on 292 unrelated SIDS cases (178 males, 204 white; age, 2.9±1.9 months). KCNJ8 mutations were coexpressed heterologously with SUR2A in COS-1 cells and characterized using whole-cell patch-clamp. Two novel KCNJ8 mutations were identified. A 5-month-old white male had an in-frame deletion (E332del) and a 2-month-old black female had a missense mutation (V346I). Both mutations localized to Kir6.1's C-terminus, involved conserved residues and were absent in 400 and 200 ethnic-matched reference alleles respectively. Both cases were negative for mutations in established channelopathic genes. Compared with WT, the pinacidil-activated K(ATP) current was decreased 45% to 68% for Kir6.1-E332del and 40% to 57% for V346I between -20 mV and 40 mV. CONCLUSIONS Molecular and functional evidence implicated loss-of-function KCNJ8 mutations as a novel pathogenic mechanism in SIDS, possibly by predisposition of a maladaptive cardiac response to systemic metabolic stressors akin to the mouse models of KCNJ8 deficiency.
Resumo:
BACKGROUND J-wave syndromes have emerged conceptually to encompass the pleiotropic expression of J-point abnormalities including Brugada syndrome (BrS) and early repolarization syndrome (ERS). KCNJ8, which encodes the cardiac K(ATP) Kir6.1 channel, recently has been implicated in ERS following identification of the functionally uncharacterized missense mutation S422L. OBJECTIVE The purpose of this study was to further explore KCNJ8 as a novel susceptibility gene for J-wave syndromes. METHODS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, comprehensive open reading frame/splice site mutational analysis of KCNJ8 was performed in 101 unrelated patients with J-wave syndromes, including 87 with BrS and 14 with ERS. Six hundred healthy individuals were examined to assess the allelic frequency for all variants detected. KCNJ8 mutation(s) was engineered by site-directed mutagenesis and coexpressed heterologously with SUR2A in COS-1 cells. Ion currents were recorded using whole-cell configuration of the patch-clamp technique. RESULTS One BrS case and one ERS case hosted the identical missense mutation S422L, which was reported previously. KCNJ8-S422L involves a highly conserved residue and was absent in 1,200 reference alleles. Both cases were negative for mutations in all known BrS and ERS susceptibility genes. K(ATP) current of the Kir6.1-S422L mutation was increased significantly over the voltage range from 0 to 40 mV compared to Kir6.1-WT channels (n = 16-21; P <.05). CONCLUSION These findings further implicate KCNJ8 as a novel J-wave syndrome susceptibility gene and a marked gain of function in the cardiac K(ATP) Kir6.1 channel secondary to KCNJ8-S422L as a novel pathogenic mechanism for the phenotypic expression of both BrS and ERS.
Resumo:
BACKGROUND Reconstruction of defects of the lateral nasal ala might be challenging. Reconstruction with a bi- or trilobed flap is common. The laterally based bi- or trilobed flap for defects of the distal ala or lateral tip of the nose produces mostly tissue protrusion in the nasal groove which is aesthetically unpleasant. Why not use more the medially based bi- or trilobed flap? OBJECTIVE To describe the utility of bilobed and trilobed flaps for alar defects insisting on the design of medially based flaps. METHODS To show the technique and practical application for this kind of reconstruction. RESULTS The bi- and trilobed flaps are useful for defect repair between the lateral nasal tip and the distal ala. We observed that in most cases the flap based medially respects anatomical subunits better than the laterally based flap for medium-sized defects of the distal ala of the nose. CONCLUSION I suggest that the bi- and trilobed flaps for repair of the lateral tip/distal ala should more often be medially based. This flap has a specific indication and precise advantage compared to other reconstructions, especially to the laterally based multilobed flaps in this specific indication.
Resumo:
Background: Total knee replacement is the gold standard treatment for patients suffering from advanced symptomatic knee osteoarthritis. The main goals of knee prosthetics are pain reduction and restoration of knee motion. The new prostheses on the market such as the bi-cruciate stabilized Journey knee implant, promise a reconstruction of total physiological function of the knee with physiological range of motion and therefore high patient satisfaction. Purpose: The aim of this study was to analyze the patient-based Knee Injury and Osteoarthritis Outcome Score (KOOS) outcome after total knee replacement with new physiological bi-cruciate stabilized Journey knee prosthesis. Study Design: Prospective, consecutive case-series. Patients: Ninety nine patients, who received bi-cruciate stabilized Journey total knee prosthesis between January 1st 2006 and May 31st 2012, were included in the study. A single surgeon operated all patients. There were 61.1% females and the overall average age was 68 years (range 41-83 years). Left knee was replaced in 55.6%. Methods: The patients filled in KOO’s questionnaire pre- and 1 year postoperative. Range of motion (ROM) was studied preoperatively and at 1-year follow-ups. The pre- and postoperative KOOS subscores and ROM were compared using the Wilcoxon signed rank test. Results: There are significant improvements of all KOOS subscores. Ninety percent of patients have reached the minimum clinically relevant 10 points in symptoms, 94.5% in pain, 94.5% in activities of daily living, 84.9% in sport and recreation, and 90% in knee related quality of life. Postoperative, the average passive ROM was 131° (range 110-145°) and the average active ROM 122° (range 105-135°). The highest correlation coefficients ROM and the KOOS were observed for the activity and pain subscores. Very low or no correlation was seen for the sport subscore. Conclusions: Bi-cruciate stabilized knee prosthetic offers a solid outcome 1 year postoperative based on the results measured with the KOOS evaluation questionnaire. The Patients showed a generalized improvement in all domains measured in the KOOS of minimally 35, and up to over 52 points, what can be described as statistically significant. Patients described the level of functionality close to double compared to the preoperative status.
Resumo:
In an article in the December 2012 issue of The Journal of Trauma and Acute Care Surgery, several author names were misprinted.
Resumo:
par Jules Bloch
Resumo:
Objective. To evaluate the diagnostic benefit of real-time elastography (RTE) in clinical routine. Strain indices (SI) for benign and malignant tumors were assessed. Methods. 100 patients with 110 focal breast lesions were retrieved. Patients had mammography (MG), ultrasound (US), and, if necessary, MRI. RTE was conducted after ultrasound. Lesions were assessed with BI-RADS for mammography and ultrasound. Diagnosis was established with histology or follow-up. Results. SI for BI-RADS 2 was 1.71 ± 0.86. Higher SI (2.21 ± 1.96) was observed for BI-RADS 3 lesions. SI of BI-RADS 4 and 5 lesions were significantly higher (16.92 ± 20.89) and (19.54 ± 10.41). 31 malignant tumors exhibited an average SI of 16.13 ± 14.67; SI of benign lesions was 5.29 ± 11.87 (P value <0.0001). ROC analysis threshold was >3.8 for malignant disease. Sensitivity of sonography was 90.3% (specificity 78.5%). RTE showed a sensitivity of 87.1% (specificity 79.7%). Accuracy of all modalities combined was 96.8%. In BI-RADS 3 lesions RTE was able to detect all malignant lesions (sensitivity 100%, specificity 92.9%, and accuracy 93.9%). Conclusions. RTE increased sensitivity and specificity for breast cancer detection when used in combination with ultrasound.
Resumo:
hôṣî'ô le-'ôrā ... Hirš Ben- ... Yeraḥmî'ēl miq-Qraqa
Resumo:
hôṣî'ô le-'ôrā ... Hirš Ben- ... Yeraḥmî'ēl miq-Qraqa Ben-
Resumo:
še ʿiṭṭēr lākem ... Yaʿaqôv Ben- ... Yiṣḥāq ... mim-mišpaḥat rabbēnû ... be-q"q Yānôw
Resumo:
še-ʿiṭṭēr lākem ... Yaʿaqôv Ben- ... Yiṣḥāq ... mim-mišpaḥat rabbēnû ... be-q"q Yānôw
Resumo:
še-ʿiṭṭēr lākem ... Yaʿaqôv Ben- ... Yiṣḥāq ... mim-mišpaḥat rabbēnû ... be-q"q Yānôw
Resumo:
še-ʿiṭṭēr lākem ... Yaʿaqôv Ben- ... Yiṣḥāq ... mim-mišpaḥat rabbēnû ... be-q"q Yānôw